相关习题
 0  263928  263936  263942  263946  263952  263954  263958  263964  263966  263972  263978  263982  263984  263988  263994  263996  264002  264006  264008  264012  264014  264018  264020  264022  264023  264024  264026  264027  264028  264030  264032  264036  264038  264042  264044  264048  264054  264056  264062  264066  264068  264072  264078  264084  264086  264092  264096  264098  264104  264108  264114  264122  266669 

科目: 来源: 题型:

【题目】已知抛物线的焦点F与椭圆的右焦点重合,过焦点F的直线l交抛物线于AB两点.

1)求抛物线C的方程;

2)记抛物线C的准线与x轴的交点为H,试问:是否存在,使得,且成立?若存在,求实数的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】阅读下列有关光线的入射与反射的两个事实现象:现象(1):光线经平面镜反射满足入射角与反射角相等(如图);现象(2);光线从椭圆的一个焦点出发经椭圆反射后通过另一个焦点(如图).试结合,上述事实现象完成下列问题:

(Ⅰ)有一椭圆型台球桌,长轴长为2a,短轴长为2b.将一放置于焦点处的桌球击出.经过球桌边缘的反射(假设球的反射充全符合现象(2)),后第一次返回到该焦点时所经过的路程记为S,求S的值(用ab表示);

(Ⅱ)结论:椭圆上任点Px0y0)处的切线的方程为.记椭圆C的方程为C,在直线x4上任一点M向椭圆C引切线,切点分别为AB.求证:直线lAB恒过定点:

(Ⅲ)过点T10)的直线l(直线l斜率不为0)与椭圆C交于PQ两点,是否存在定点Ss0),使得直线SPSQ斜率之积为定值,若存在求出S坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数

1)当时,求的最大值;

2)若函数有两个零点,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在多面体中,四边形均为正方形,点M的中点,点H在线段上,且与平面所成角的正弦值为.

1)求证:平面

2)求二面角的正弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知点(其中)是曲线上的两点,两点在轴上的射影分别为点.

1)当点的坐标为时,求直线的方程;

2)记的面积为,梯形的面积为,求的范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,AB为圆O的直径,点EF在圆O上,ABEF,矩形ABCD所在的平面与圆O所在的平面互相垂直.已知AB2EF1

(Ⅰ)求证:平面DAF⊥平面CBF

(Ⅱ)当AD1时,求直线FB与平面DFC所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知圆M过两点A1,﹣1),B(﹣11),且圆心Mx+y20上,

(Ⅰ)求圆M的方程;

(Ⅱ)设P是直线x+y+20上的动点.PCPD是圆M的两条切线,CD为切点,求四边形PCMD面积的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,离心率为,动点在椭圆上,的周长为6

1)求椭圆的方程;

2)设直线与椭圆的另一个交点为,过分别作直线的垂线,垂足为轴的交点为.若四边形的面积是面积的3倍,求直线斜率的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】随着人民生活水平的日益提高,某小区居民拥有私家车的数量与日俱增.由于该小区建成时间较早,没有配套建造地下停车场,小区内无序停放的车辆造成了交通的拥堵.该小区的物业公司统计了近五年小区登记在册的私家车数量(累计值,如147表示2016年小区登记在册的所有车辆数,其余意义相同),得到如下数据:

编号

1

2

3

4

5

年份

2014

2015

2016

2017

2018

数量(单位:辆)

37

104

147

196

216

1)若私家车的数量与年份编号满足线性相关关系,求关于的线性回归方程,并预测2020年该小区的私家车数量;

2)小区于2018年底完成了基础设施改造,划设了120个停车位.为解决小区车辆乱停乱放的问题,加强小区管理,物业公司决定禁止无车位的车辆进入小区.由于车位有限,物业公司决定在2019年度采用网络竞拍的方式将车位对业主出租,租期一年,竞拍方案如下:①截至2018年己登记在册的私家车业主拥有竞拍资格;②每车至多中请一个车位,由车主在竞拍网站上提出申请并给出自己的报价;③根据物价部门的规定,竞价不得超过1200元;④申请阶段截止后,将所有申请的业主报价自高到低排列,排在前120位的业主以其报价成交;⑤若最后出现并列的报价,则以提出申请的时间在前的业主成交,为预测本次竞拍的成交最低价,物业公司随机抽取了有竞拍资格的40位业主,进行了竞拍意向的调查,并对他们的拟报竞价进行了统计,得到如图频率分布直方图:

i)求所抽取的业主中有意向竞拍报价不低于1000元的人数;

ii)如果所有符合条件的车主均参与竞拍,利用样本估计总体的思想,请你据此预测至少需要报价多少元才能竞拍车位成功?(精确到整数)

参考公式及数据:对于一组数据,其回归方程的斜率和截距的最小二乘估计分别为:

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,四边形ABCD是边长为1的正方形,MDABCDNBABCD.且MDNB1.则下列结论中:

MCAN

DB∥平面AMN

③平面CMN⊥平面AMN

④平面DCM∥平面ABN

所有假命题的个数是(  

A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案