科目: 来源: 题型:
【题目】已知椭圆的离心率为分别为其左、右焦点,为椭圆上一点,且的周长为.
(1)求椭圆的方程;
(2)过点作关于轴对称的两条不同的直线,若直线交椭圆于一点,直线交椭圆于一点,证明:直线过定点.
查看答案和解析>>
科目: 来源: 题型:
【题目】给出下列四个命题:
①如果平面外一条直线与平面内一条直线平行,那么;
②过空间一定点有且只有一条直线与已知平面垂直;
③如果一条直线垂直于一个平面内的无数条直线,那么这条直线与这个平面垂直;
④若两个相交平面都垂直于第三个平面,则这两个平面的交线垂直于第三个平面.
其中真命题的序号为______.
查看答案和解析>>
科目: 来源: 题型:
【题目】海水养殖场使用网箱养殖的方法,收获时随机抽取了 100个网箱,测量各箱水产品的产量(单位:),其产量都属于区间,按如下形式分成5组,第一组:,第二组:,第三组:,第四组:,第五组:,得到频率分布直方图如图:
定义箱产量在(单位:)的网箱为“低产网箱”, 箱产量在区间的网箱为“高产网箱”.
(1)若同一组中的每个数据可用该组区间的中点值代替,试计算样本中的100个网箱的产量的平均数;
(2)按照分层抽样的方法,从这100个样本中抽取25个网箱,试计算各组中抽取的网箱数;
(3)若在(2)抽取到的“低产网箱”及“高产网箱”中再抽取2箱,记其产量分别,求的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=|ax-2|,不等式f(x)≤4的解集为{x|-2≤x≤6}.
(1)求实数a的值;
(2)设g(x)=f(x)+f(x+3),若存在x∈R,使g(x)-tx≤2成立,求实数t的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,曲线的参数方程为为参数),在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,点的极坐标为,直线的极坐标方程为.
(1)求直线的直角坐标方程与曲线的普通方程;
(2)若是曲线上的动点,为线段的中点,求点到直线的距离的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】近年来,网上购物已经成为人们消费的一种习惯.假设某淘宝店的一种装饰品每月的销售量 (单位:千件)与销售价格 (单位:元/件)之间满足如下的关系式:为常数.已知销售价格为元/件时,每月可售出千件.
(1)求实数的值;
(2)假设该淘宝店员工工资、办公等所有的成本折合为每件2元(只考虑销售出的装饰品件数),试确定销售价格的值,使该店每月销售装饰品所获得的利润最大.(结果保留一位小数)
查看答案和解析>>
科目: 来源: 题型:
【题目】某高校为增加应届毕业生就业机会,每年根据应届毕业生的综合素质和学业成绩对学生进行综合评估,已知某年度参与评估的毕业生共有2000名,其评估成绩近似的服从正态分布.现随机抽取了100名毕业生的评估成绩作为样本,并把样本数据进行了分组,绘制了频率分布直方图:
(1)求样本平均数和样本方差(同一组中的数据用该组区间的中点值作代表);
(2)若学校规定评估成绩超过分的毕业生可参加三家公司的面试.
(ⅰ)用样本平均数作为的估计值,用样本标准差作为的估计值,请利用估计值判断这2000名毕业生中,能够参加三家公司面试的人数;
(ⅱ)若三家公司每家都提供甲、乙、丙三个岗位,岗位工资表如下:
公司 | 甲岗位 | 乙岗位 | 丙岗位 |
9600 | 6400 | 5200 | |
9800 | 7200 | 5400 | |
10000 | 6000 | 5000 |
李华同学取得了三个公司的面试机会,经过评估,李华在三个公司甲、乙、丙三个岗位的面试成功的概率均为,李华准备依次从三家公司进行面试选岗,公司规定:面试成功必须当场选岗,且只有一次机会.李华在某公司选岗时,若以该岗位工资与未进行面试公司的工资期望作为抉择依据,问李华可以选择公司的哪些岗位?
并说明理由.
附:,若随机变量,
则.
查看答案和解析>>
科目: 来源: 题型:
【题目】设函数是定义在上的连续函数,且在处存在导数,若函数及其导函数满足,则函数( )
A.既有极大值又有极小值B.有极大值 ,无极小值
C.有极小值,无极大值D.既无极大值也无极小值
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com