相关习题
 0  263983  263991  263997  264001  264007  264009  264013  264019  264021  264027  264033  264037  264039  264043  264049  264051  264057  264061  264063  264067  264069  264073  264075  264077  264078  264079  264081  264082  264083  264085  264087  264091  264093  264097  264099  264103  264109  264111  264117  264121  264123  264127  264133  264139  264141  264147  264151  264153  264159  264163  264169  264177  266669 

科目: 来源: 题型:

【题目】已知函数,曲线在点的切线方程为.

1)求实数的值,并求的极值.

2)是否存在,使得对任意恒成立?若存在,求出的最小值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数,曲线在点处的切线与直线垂直(其中为自然对数的底数).

1)求的解析式及单调递减区间;

2)是否存在常数,使得对于定义域内的任意恒成立,若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数

(1)当a为何值时,x轴为曲线的切线;

(2)设函数,讨论在区间(0,1)上零点的个数.

查看答案和解析>>

科目: 来源: 题型:

【题目】某企业为确定下一年投入某种产品的研发费用,需了解年研发费用(单位:千万元)对年销售量(单位:千万件)的影响,统计了近年投入的年研发费用与年销售量的数据,得到散点图如图所示:

(Ⅰ)利用散点图判断,(其中为大于的常数)哪一个更适合作为年研发费用和年销售量的回归方程类型(只要给出判断即可,不必说明理由);

(Ⅱ)对数据作出如下处理:令,得到相关统计量的值如下表:

根据(Ⅰ)的判断结果及表中数据,求关于的回归方程;

(Ⅲ)已知企业年利润(单位:千万元)与的关系为(其中),根据(Ⅱ)的结果,要使得该企业下一年的年利润最大,预计下一年应投入多少研发费用?

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为

查看答案和解析>>

科目: 来源: 题型:

【题目】已知抛物线的焦点为,若过点且斜率为1的直线与抛物线交于 两点,且.

(1)求抛物线的方程;

(2)若平行于的直线与抛物线相切于点,求的面积.

查看答案和解析>>

科目: 来源: 题型:

【题目】通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:

总计

爱好

40

20

60

不爱好

20

30

50

总计

60

50

110

附:

0.050

0.010

0.001

3.841

6.635

10.828

则下列说法正确的是(

A.以上的把握认为爱好该项运动与性别无关

B.以上的把握认为爱好该项运动与性别无关

C.在犯错误的概率不超过的前提下,认为爱好该项运动与性别有关

D.在犯错误的概率不超过的前提下,认为爱好该项运动与性别有关

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数,其中为自然对数的底数.

1)求函数的单调区间和最值;

2)当时,不等式恒成立,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数有两个零点,则下列说法错误的是(

A.B.C.有极大值点,且D.

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系中,抛物线C关于轴对称,顶点为坐标原点,且经过点

1)求抛物线C的标准方程;

2 过点的直线交抛物线于MN两点.是否存在定直线,使得l上任意点P与点MQN所成直线的斜率成等差数列.若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】十八届五中全会首次提出了绿色发展理念,将绿色发展作为十三五乃至更长时期经济社会发展的一个重要理念.某地区践行绿水青山就是金山银山的绿色发展理念,2015年初至2019年初,该地区绿化面积y(单位:平方公里)的数据如下表:

年份

2015

2016

2017

2018

2019

年份代号x

1

2

3

4

5

绿化面积y

2.8

3.5

4.3

4.7

5.2

1)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;

2)利用(1)中的回归方程,预测该地区2025年初的绿化面积.

(参考公式:线性回归方程:为数据平均数)

查看答案和解析>>

同步练习册答案