相关习题
 0  264014  264022  264028  264032  264038  264040  264044  264050  264052  264058  264064  264068  264070  264074  264080  264082  264088  264092  264094  264098  264100  264104  264106  264108  264109  264110  264112  264113  264114  264116  264118  264122  264124  264128  264130  264134  264140  264142  264148  264152  264154  264158  264164  264170  264172  264178  264182  264184  264190  264194  264200  264208  266669 

科目: 来源: 题型:

【题目】李克强总理在2018年政府工作报告指出,要加快建设创新型国家,把握世界新一轮科技革命和产业变革大势,深入实施创新驱动发展战略,不断增强经济创新力和竞争力.某手机生产企业积极响应政府号召,大力研发新产品,争创世界名牌.为了对研发的一批最新款手机进行合理定价,将该款手机按事先拟定的价格进行试销,得到一组销售数据,如表所示:

单价(千元)

销量(百件)

已知.

(1)若变量具有线性相关关系,求产品销量(百件)关于试销单价(千元)的线性回归方程

(2)用(1)中所求的线性回归方程得到与对应的产品销量的估计值.当销售数据对应的残差的绝对值时,则将销售数据称为一个“好数据”.现从个销售数据中任取个子,求“好数据”个数的分布列和数学期望.

(参考公式:线性回归方程中的估计值分别为.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在三棱锥中,,侧面底面为线段上一点,且满足.

(1)若的中点,求证:

(2)当最小时,求二面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】设椭圆的左焦点为,上顶点为.已知椭圆的短轴长为4,离心率为.

1)求椭圆的方程;

2)设点在椭圆上,且异于椭圆的上、下顶点,点为直线轴的交点,点轴的负半轴上.若为原点),且,求证:直线的斜率与直线MN的斜率之积为定值.

查看答案和解析>>

科目: 来源: 题型:

【题目】高一(1)班参加校生物竞赛学生的成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题:

(1)求高一(1)班参加校生物竞赛的人数及分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间的矩形的高;

(2)若要从分数在[80,100]之间的学生中任选2人进行某项研究,求至少有1人分数在[90,100]之间的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知是半圆的直径,是将半圆圆周四等分的三个分点

(1)从这5个点中任取3个点,求这3个点组成直角三角形的概率;

(2)在半圆内任取一点,求的面积大于的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】菜市房管局为了了解该市市民2018年1月至2019年1月期间购买二手房情况,首先随机抽样其中200名购房者,并对其购房面积(单位:平方米,)进行了一次调查统计,制成了如图1所示的频率分布南方匿,接着调查了该市2018年1月﹣2019年1月期间当月在售二手房均价(单位:万元/平方米),制成了如图2所示的散点图(图中月份代码1﹣13分别对应2018年1月至2019年1月).

(1)试估计该市市民的平均购房面积

(2)现采用分层抽样的方法从购房耐积位于的40位市民中随机取4人,再从这4人中随机抽取2人,求这2人的购房面积恰好有一人在的概率.

(3)根据散点图选择两个模型进行拟合,经过数据处理得到两个回归方程,分别为,并得到一些统计量的值,如表所示:

请利用相关指数判断哪个模型的拟合效果更好,并用拟合效果更好的模型预测2019年6月份的二手房购房均价(精确到).

参考数据:,,,.参考公式:相关指数

查看答案和解析>>

科目: 来源: 题型:

【题目】高一(1)班参加校生物竞赛学生的成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题:

(1)求高一(1)班参加校生物竞赛的人数及分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间的矩形的高;

(2)若要从分数在[80,100]之间的学生中任选2人进行某项研究,求至少有1人分数在[90,100]之间的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知是半圆的直径,是将半圆圆周四等分的三个分点

(1)从这5个点中任取3个点,求这3个点组成直角三角形的概率;

(2)在半圆内任取一点,求的面积大于的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数,若曲线在点处的切线方程是,不等式的解集为非空集合,其中为自然对数的底数.

(Ⅰ)求的解析式,并用表示

(Ⅱ)若任意,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知分别是双曲线E 的左、右焦点,P是双曲线上一点, 到左顶点的距离等于它到渐近线距离的2倍,(1)求双曲线的渐近线方程;(2)当时, 的面积为,求此双曲线的方程。

查看答案和解析>>

同步练习册答案