相关习题
 0  264017  264025  264031  264035  264041  264043  264047  264053  264055  264061  264067  264071  264073  264077  264083  264085  264091  264095  264097  264101  264103  264107  264109  264111  264112  264113  264115  264116  264117  264119  264121  264125  264127  264131  264133  264137  264143  264145  264151  264155  264157  264161  264167  264173  264175  264181  264185  264187  264193  264197  264203  264211  266669 

科目: 来源: 题型:

【题目】如图,正三棱柱中,各棱长均为4, 分别是的中点.

(1)求证:平面

(2)求直线与平面所成角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】某学校随机抽取部分学生调查其上学路上所需时间(单位:分钟),并将所得数据制成频率分布直方图(如图),若上学路上所需时间的范围为,样本数据分组为.

1)求直方图中a的值;

2)如果上学路上所需时间不少于40分钟的学生可申请在学校住宿,若招收学生1200人,请估计所招学生中有多少人可以申请住宿;

3)求该校学生上学路上所需的平均时间.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在三棱柱中,侧面是菱形,是棱的中点,在线段上,且.

(1)证明:

(2)若,面,求二面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】设等差数列{an}的前n项和为Sn,若S9=81a3+a5=14

1)求数列{an}的通项公式;

2)设bn=,若{bn}的前n项和为Tn,证明:Tn

查看答案和解析>>

科目: 来源: 题型:

【题目】已知棱长为1的正方体ABCDA1B1C1D1中,EFM分别是线段ABADAA1的中点,又PQ分别在线段A1B1A1D1上,且A1PA1Qx(0<x<1).设平面MEF∩平面MPQ

l,现有下列结论:

l∥平面ABCD

lAC

③直线l与平面BCC1B1不垂直;

④当x变化时,l不是定直线.

其中不成立的结论是________.(写出所有不成立结论的序号)

查看答案和解析>>

科目: 来源: 题型:

【题目】已知抛物线的焦点为,直线与抛物线交于两点,是坐标原点.

(1)若直线过点,求直线的方程;

(2)已知点,若直线不与坐标轴垂直,且,证明:直线过定点.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知抛物线)经过点,直线与抛物线有两个不同的交点,直线轴于,直线轴于.

(1)若直线过点,求直线的斜率的取值范围;

(2)若直线过点,设,求的值;

(3)若直线过抛物线的焦点,交轴于点,求的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】(本小题满分13分)

为回馈顾客,某商场拟通过摸球兑奖的方式对1000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.

1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元,求

顾客所获的奖励额为60元的概率

顾客所获的奖励额的分布列及数学期望;

2)商场对奖励总额的预算是60000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系中,圆的方程为,若直线上至少存在一点,使得以该点为圆心,1为半径的圆与圆有公共点,则的最大值为__________

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的中心在原点,焦点在轴,离心率为,短轴长为2.

1)求椭圆的标准方程;

2)设,过椭圆左焦点的直线两点,若对满足条件的任意直线,不等式恒成立,求的最小值.

查看答案和解析>>

同步练习册答案