相关习题
 0  264029  264037  264043  264047  264053  264055  264059  264065  264067  264073  264079  264083  264085  264089  264095  264097  264103  264107  264109  264113  264115  264119  264121  264123  264124  264125  264127  264128  264129  264131  264133  264137  264139  264143  264145  264149  264155  264157  264163  264167  264169  264173  264179  264185  264187  264193  264197  264199  264205  264209  264215  264223  266669 

科目: 来源: 题型:

【题目】已知zy之间的一组数据如下表:

x

1

3

6

7

8

y

1

2

3

4

5

1)从x ,y中各取一个数,求x+y≥10的概率;

2)对于表中数据,甲、乙两同学给出的拟合直线分别为,试利用最小平方法(也称最小二乘法)判断哪条直线拟合程度更好.

查看答案和解析>>

科目: 来源: 题型:

【题目】过年时小明的舅舅在家庭微信群里发了一个10元的红包,红包被随机分配为2.51元,3.32元,1.24元,0.26元,2.67元,共五份.现已知小明与爸爸都各自抢到了一个红包,则两人抢到红包的金额总和不小于4元的概率为__________.

查看答案和解析>>

科目: 来源: 题型:

【题目】某投资公司计划投资AB两种金融产品,根据市场调查与预测,A产品的利润y1与投资金额x的函数关系为y118B产品的利润y2与投资金额x的函数关系为y2(注:利润与投资金额单位:万元).

(1)该公司已有100万元资金,并全部投入AB两种产品中,其中x万元资金投入A产品,试把AB两种产品利润总和表示为x的函数,并写出定义域;

(2)在(1)的条件下,试问:怎样分配这100万元资金,才能使公司获得最大利润?其最大利润为多少万元?

查看答案和解析>>

科目: 来源: 题型:

【题目】某市一次全市高中男生身高统计调查数据显示:全市100000名男生的身高服从正态分布N(168,16).现从某学校高三年级男生中随机抽取50名测量身高,测量发现被测学生身高全部介于160 cm184 cm之间,将测量结果按如下方式分成6组:第1[160,164),第2[164,168),第6[180,184],如图是按上述分组方法得到的频率分布直方图.

(1)由频率分布直方图估计该校高三年级男生平均身高状况;

(2)求这50名男生身高在172 cm以上(172 cm)的人数;

(3)在这50名男生身高在172 cm以上(172 cm)的人中任意抽取2人,将该2人中身高排名(从高到低)在全市前130名的人数记为ξ,求ξ的数学期望.

参考数据:若ξN(μσ2),则P(μσ<ξ≤μσ)0.6826P(μ2σ<ξ≤μ2σ)0.9544P(μ3σ<ξ≤μ3σ)0.9974.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知数列满足对任意的都有,且

(1)求数列的通项公式;

(2)设数列的前项和为,不等式对任意的正整数恒成立,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】袋子中有四张卡片,分别写有“瓷、都、文、明”四个字,有放回地从中任取一张卡片,将三次抽取后“瓷”“都”两个字都取到记为事件,用随机模拟的方法估计事件发生的概率.利用电脑随机产生整数0,1,2,3四个随机数,分别代表“瓷、都、文、明”这四个字,以每三个随机数为一组,表示取卡片三次的结果,经随机模拟产生了以下18组随机数:

232

321

230

023

123

021

132

220

001

231

130

133

231

031

320

122

103

233

由此可以估计事件发生的概率为(

A. B. C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系中,已知直线的方程为,曲线是以坐标原点为顶点,直线为准线的抛物线.以坐标原点为极点,轴非负半轴为极轴建立极坐标系.

(1)分别求出直线与曲线的极坐标方程:

(2)点是曲线上位于第一象限内的一个动点,点是直线上位于第二象限内的一个动点,且,请求出的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】设数列是以2为首项,1为公差的等差数列,是以1为首项,2为公比的等比数列,则( )

A.1033B.1034C.2057D.2058

查看答案和解析>>

科目: 来源: 题型:

【题目】某班随机抽查了名学生的数学成绩,分数制成如图的茎叶图,其中组学生每天学习数学时间不足个小时,组学生每天学习数学时间达到一个小时,学校规定分及分以上记为优秀,分及分以上记为达标,分以下记为未达标.

1)根据茎叶图完成下面的列联表:

达标

未达标

总计

总计

2)判断是否有的把握认为“数学成绩达标与否”与“每天学习数学时间能否达到一小时”有关.

参考公式与临界值表:,其中.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知下列命题:

①在线性回归模型中,相关指数越接近于1,表示回归效果越好;

②两个变量相关性越强,则相关系数r就越接近于1;

③在回归直线方程中,当解释变量每增加一个单位时,预报变量平均减少0.5个单位;

④两个模型中残差平方和越小的模型拟合的效果越好.

⑤回归直线恒过样本点的中心,且至少过一个样本点;

⑥若的观测值满足≥6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;

⑦从统计量中得知有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误. 其中正确命题的序号是__________

查看答案和解析>>

同步练习册答案