相关习题
 0  264037  264045  264051  264055  264061  264063  264067  264073  264075  264081  264087  264091  264093  264097  264103  264105  264111  264115  264117  264121  264123  264127  264129  264131  264132  264133  264135  264136  264137  264139  264141  264145  264147  264151  264153  264157  264163  264165  264171  264175  264177  264181  264187  264193  264195  264201  264205  264207  264213  264217  264223  264231  266669 

科目: 来源: 题型:

【题目】2019年国际篮联篮球世界杯,将于2019年在北京、广州、南京、上海、武汉、深圳、佛山、东莞八座城市举行.为了宣传世界杯,某大学从全校学生中随机抽取了120名学生,对是否收看篮球世界杯赛事的情况进行了问卷调查,统计数据如下:

1)根据上表说明,能否有的把握认为收看篮球世界杯赛事与性别有关?

2)现从参与问卷调查的120名学生中,采用按性别分层抽样的方法选取6人参加2019年国际篮联篮球世界杯赛志愿者宣传活动.

i)求男、女学生各选取多少人;

ii)若从这6人中随机选取3人到校广播站开展2019年国际篮联篮球世界杯赛宣传介绍,求恰好选到2名男生的概率.

附:,其中.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知抛物线上一点,点是抛物线上异于的两动点,且,则点到直线的距离的最大值是______.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知点,动点到直线的距离与动点到点的距离之比为.

(1)求动点的轨迹的方程;

(2)过点作任一直线交曲线两点,过点的垂线交直线于点,求证:平分线段.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,等边三角形所在平面与梯形所在平面互相垂直,且有.

(1)证明:平面平面

(2)求二面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】某部队在一次军演中要先后执行六项不同的任务,要求是:任务必须排在前三项执行,且执行任务之后需立即执行任务,任务相邻,则不同的执行方案共有______.

查看答案和解析>>

科目: 来源: 题型:

【题目】科研人员在对人体脂肪含量和年龄之间关系的研究中,获得了一些年龄和脂肪含量的简单随机样本数据,如下表:

(年龄/岁)

26

27

39

41

49

53

56

58

60

61

(脂肪含量/%)

14.5

17.8

21.2

25.9

26.3

29.6

31.4

33.5

35.2

34.6

根据上表的数据得到如下的散点图.

(1)根据上表中的样本数据及其散点图:

(i)求

(i)计算样本相关系数(精确到0.01),并刻画它们的相关程度.

(2)若关于的线性回归方程为,求的值(精确到0.01),并根据回归方程估计年龄为50岁时人体的脂肪含量.

附:参考数据:img src="http://thumb.zyjl.cn/Upload/2019/08/18/08/786210e5/SYS201908180802150104289801_ST/SYS201908180802150104289801_ST.007.png" width="51" height="19" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />

参考公式:相关系数

回归方程中斜率和截距的最小二乘估计公式分别为.

查看答案和解析>>

科目: 来源: 题型:

【题目】一商家诚邀甲、乙两名围棋高手进行一场网络国棋比赛,每比赛一局商家要向每名棋手支付2000元对局费,同时商家每局从转让网络转播权及广告宣传中获利12100元,从两名棋手以往比赛中得知,甲每局获胜的概率为,乙每局获胜的概率为,两名棋手约定:最多下五局,先连胜两局者获胜,比赛结束,比赛结束后,商家为获胜者颁发5000元的奖金,若没有决出获胜者则各颁发2500.

1)求下完五局且甲获胜的概率是多少;

2)求商家从这场网络棋赛中获得的收益的数学期望是多少.

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面四边形中,所成的比为,即,则有:.

1)拓展到空间,写出空间四边形类似的命题,并加以证明;

2)在长方体中,分别为的中点,利用上述(1)的结论求线段的长度;

3)在所有棱长均为平行六面体中,为锐角定值),所成的比为,求的长度.(用表示)

查看答案和解析>>

科目: 来源: 题型:

【题目】已知四棱锥的底面为菱形,且相交于点.

1)求证:底面

2)求直线与平面所成的角的值;

3)求平面与平面所成二面角的值.(用反三角函数表示)

查看答案和解析>>

科目: 来源: 题型:

【题目】已知点在圆柱的底面圆上,为圆的直径.

1)求证:

2)若圆柱的体积,求异面直线所成的角(用反三角函数值表示结果).

查看答案和解析>>

同步练习册答案