相关习题
 0  264044  264052  264058  264062  264068  264070  264074  264080  264082  264088  264094  264098  264100  264104  264110  264112  264118  264122  264124  264128  264130  264134  264136  264138  264139  264140  264142  264143  264144  264146  264148  264152  264154  264158  264160  264164  264170  264172  264178  264182  264184  264188  264194  264200  264202  264208  264212  264214  264220  264224  264230  264238  266669 

科目: 来源: 题型:

【题目】如图所示在四棱锥中,下底面为正方形,平面平面为以为斜边的等腰直角三角形,,若点是线段上的中点.

1)证明平面.

2)求二面角的平面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知集合,集合是集合S的一个含有8个元素的子集.

1)当时,设

①写出方程的解();

②若方程至少有三组不同的解,写出k的所有可能取值;

2)证明:对任意一个X,存在正整数k,使得方程至少有三组不同的解.

查看答案和解析>>

科目: 来源: 题型:

【题目】长时间用手机上网严重影响着学生的健康,某校为了解AB两班学生手机上网的时长,分别从这两个班中随机抽取6名同学进行调查,将他们平均每周手机上网时长作为样本数据,绘制成茎叶图如图所示(图中的茎表示十位数字,叶表示个位数字).如果学生平均每周手机上网的时长大于21小时,则称为“过度用网”

1)请根据样本数据,分别估计AB两班的学生平均每周上网时长的平均值;

2)从A班的样本数据中有放回地抽取2个数据,求恰有1个数据为“过度用网”的概率;

3)从A班、B班的样本中各随机抽取2名学生的数据,记“过度用网”的学生人数为,写出的分布列和数学期望E.

查看答案和解析>>

科目: 来源: 题型:

【题目】己知函数

(1)当时,设函数,求函数的单调区间和极值;

(2)设的导函数,若对任意的恒成立,求的取值范围;

(3)设函数,当时,求在区间上的最大值和最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示,在四棱锥中,底面是菱形,交于点底面的中点,.

(1)求证: 平面

(2)求异面直线所成角的余弦值;

(3)求与平面所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】某单位共有员工45人,其中男员工27人,女员工18.上级部门为了对该单位员工的工作业绩进行评估,采用按性别分层抽样的方法抽取5名员工进行考核.

1)求抽取的5人中男、女员工的人数分别是多少;

2)考核前,评估小组从抽取的5名员工中,随机选出3人进行访谈.求选出的3人中有1位男员工的概率;

3)考核分笔试和答辩两项.5名员工的笔试成绩分别为7885899296;结合答辩情况,他们的考核成绩分别为958810210699.5名员工笔试成绩与考核成绩的方差分别记为,试比较的大小.(只需写出结论)

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

1)若,求曲线在点处的切线方程;

2)讨论函数的单调区间.

查看答案和解析>>

科目: 来源: 题型:

【题目】在下列命题中,

①从分别标有1,2,……,99张卡片中不放回地随机抽取2次,每次抽取1张,则抽到的2张卡片上的数奇偶性不同的概率是

的展开式中的常数项为2

③设随机变量,若,则.

其中所有正确命题的序号是(

A.B.①③

C.②③D.①②③

查看答案和解析>>

科目: 来源: 题型:

【题目】某中学一位高三班主任对本班50名学生学习积极性和对待班级工作的态度进行调查,得到的统计数据如表所示:

积极参加班级工作

不积极参加班级工作

合计

学习积极性高

18

7

25

学习积极性不高

6

19

25

合计

24

26

50

如果随机调查这个班的一名学生,求事件A:抽到不积极参加班级工作且学习积极性不高的学生的概率;

若不积极参加班级工作且学习积极性高的7名学生中有两名男生,现从中抽取两名学生参加某项活动,请用字母代表不同的学生列举出抽取的所有可能结果;

的条件下,求事件B:两名学生中恰有1名男生的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知,若动点满足:.

1)求动点的轨迹的方程;

2)若点分别位于轴与轴的正半轴上,直线与曲线相交于两点,且,请问在曲线上是否存在点,使得四边形为坐标原点)为平行四边形?若存在,求出直线的方程;若不存在,说明理由.

查看答案和解析>>

同步练习册答案