相关习题
 0  264059  264067  264073  264077  264083  264085  264089  264095  264097  264103  264109  264113  264115  264119  264125  264127  264133  264137  264139  264143  264145  264149  264151  264153  264154  264155  264157  264158  264159  264161  264163  264167  264169  264173  264175  264179  264185  264187  264193  264197  264199  264203  264209  264215  264217  264223  264227  264229  264235  264239  264245  264253  266669 

科目: 来源: 题型:

【题目】已知抛物线焦点为,且,过作斜率为的直线交抛物线两点.

1)若,求

2)若为坐标原点,为定值,当变化时,始终有,求定值的大小;

3)若,当改变时,求三角形的面积的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在三棱柱中,平面.且四边形是菱形,.

(1)求证:

(2)若,三棱锥的体积为,求的面积.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数

1)若存在极值点1,求的值;

2)若存在两个不同的零点,求证:

查看答案和解析>>

科目: 来源: 题型:

【题目】A是圆Ox2+y216上的任意一点,l是过点A且与x轴垂直的直线,B是直线lx轴的交点,点Q在直线l上,且满足4|BQ|3|BA|.当点A在圆O上运动时,记点Q的轨迹为曲线C

1)求曲线C的方程;

2)已知直线ykx2k≠0)与曲线C交于MN两点,点M关于y轴的对称点为M,设P0,﹣2),证明:直线MN过定点,并求△PMN面积的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知圆Cx2+y2+2x2y+10和抛物线Ey22pxp0),圆C与抛物线E的准线交于MN两点,MNF的面积为p,其中FE的焦点.

1)求抛物线E的方程;

2)不过原点O的动直线l交该抛物线于AB两点,且满足OAOB,设点Q为圆C上任意一动点,求当动点Q到直线l的距离最大时直线l的方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知在三棱锥中, 是等腰直角三角形,且

平面

(Ⅰ)求证:平面平面

(Ⅱ)若的中点,求二面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】为了打好脱贫攻坚战,某贫困县农科院针对玉米种植情况进行调研,力争有效的改良玉米品种,为农民提供技术支.现对已选出的一组玉米的茎高进行统计,获得茎叶图如右图(单位:厘米),设茎高大于或等于180厘米的玉米为高茎玉米,否则为矮茎玉米.

1)完成列联表,并判断是否可以在犯错误的概率不超过1%的前提下,认为抗倒伏与玉米矮茎有关?

2①按照分层抽样的方式,在上述样本中,从易倒伏和抗倒伏两组中抽取9株玉米,设取出的易倒伏矮茎玉米株数为,求的分布列(概率用组合数算式表示);

②若将频率视为概率,从抗倒伏的玉米试验田中再随机抽取出50株,求取出的高茎玉米株数的数学期望和方差.

查看答案和解析>>

科目: 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知极坐标系的极点为直角坐标系的原点,极轴为轴的正半轴,两种坐标系中的长度单位相同,圆的直角坐标方程为,直线的参数方程为为参数),射线的极坐标方程为

1)求圆和直线的极坐标方程;

(2)已知射线与圆的交点为,与直线的交点为,求线段的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数

1)当为何值时,轴为曲线的切线;

(2)用表示中的最小值,设函数,讨论零点的个数.

查看答案和解析>>

科目: 来源: 题型:

【题目】为了促进学生的全面发展,某市教育局要求本市所有学校重视社团文化建设,2014年该市某中学的某新生想通过考核选拨进入该校的“电影社”和“心理社”,已知该同学通过考核选拨进入这两个社团成功与否相互独立根据报名情况和他本人的才艺能力,两个社团都能进入的概率为,至少进入一个社团的概率为,并且进入“电影社”的概率小于进入“心理社”的概率

(Ⅰ)求该同学分别通过选拨进入“电影社”的概率和进入心理社的概率

(Ⅱ)学校根据这两个社团的活动安排情况,对进入“电影社”的同学增加1个校本选修课学分,对进入“心理社”的同学增加0.5个校本选修课学分.求该同学在社团方面获得校本选修课学分分数不低于1分的概率.

查看答案和解析>>

同步练习册答案