相关习题
 0  264062  264070  264076  264080  264086  264088  264092  264098  264100  264106  264112  264116  264118  264122  264128  264130  264136  264140  264142  264146  264148  264152  264154  264156  264157  264158  264160  264161  264162  264164  264166  264170  264172  264176  264178  264182  264188  264190  264196  264200  264202  264206  264212  264218  264220  264226  264230  264232  264238  264242  264248  264256  266669 

科目: 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调区间;

(2)若是曲线上的两点,.问: 是否存在,使得直线的斜率等于?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】某种汽车购买时费用为144万元,每年应交付保险费、养路费及汽油费共0.9万元,汽车的维修费为:第一年0.2万元,第二年0.4万元,第三年0.6万元,……,依等差数列逐年递增.

)设使用n年该车的总费用(包括购车费用)为f(n),试写出f(n)的表达式;

)求这种汽车使用多少年报废最合算(即该车使用多少年平均费用最少).

查看答案和解析>>

科目: 来源: 题型:

【题目】(e为自然对数的底数),

(I)记.

(i)讨论函数单调性;

(ii)证明当时,恒成立

(II)令,设函数G(x)有两个零点,求参数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆C:过点,左右焦点为,且椭圆C关于直线对称的图形过坐标原点。

(I)求椭圆C方程;

(II)圆D:与椭圆C交于A,B两点,R为线段AB上任一点,直线F1R交椭圆C于P,Q两点,若AB为圆D的直径,且直线F1R的斜率大于1,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,菱形ABCD与正三角形BCE的边长均为2,且平面ABCD⊥平面BCE,平面ABCD,

(I)求证:平面ABCD;

(II)求证:平面ACF⊥平面BDF.

查看答案和解析>>

科目: 来源: 题型:

【题目】某中学高三年级有学生500人,其中男生300人,女生200人。为了研究学生的数学成绩是否与性别有关,采用分层抽样的方法,从中抽取了100名学生,统计了他们期中考试的数学分数,然后按照性别分为男、女两组,再将两组的分数分成5组: 分别加以统计,得到如图所示的频率分布直方图。

(I)从样本分数小于110分的学生中随机抽取2人,求两人恰为一男一女的概率;

(II)若规定分数不小于130分的学生为“数学尖子生”,请你根据已知条件完成2×2列联表,并判断是否有90%的把握认为“数学尖子生与性别有关”?

附表:

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆经过点,离心率为,点为椭圆的右顶点,直线与椭圆相交于不同于点的两个点.

(Ⅰ)求椭圆的标准方程;

(Ⅱ)当时,求面积的最大值;

(Ⅲ)若直线的斜率为2,求证:的外接圆恒过一个异于点的定点.

查看答案和解析>>

科目: 来源: 题型:

【题目】.

(Ⅰ)令,求的单调区间;

(Ⅱ)当时,直线的图像有两个交点,且,求证:.

查看答案和解析>>

科目: 来源: 题型:

【题目】为弘扬传统文化,某校举行诗词大赛.经过层层选拔,最终甲乙两人进入总决赛,争夺冠军.决赛规则如下:①比赛共设有五道题;②双方轮流答题,每次回答一道,两人答题的先后顺序通过抽签决定;③若答对,自己得1分;若答错,则对方得1分;④先得3分者获胜.已知甲、乙答对每道题的概率分别为,且每次答题的结果相互独立.

(Ⅰ)若乙先答题,求甲3:0获胜的概率;

(Ⅱ)若甲先答题,记乙所得分数为,求的分布列和数学期望.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知曲线的极坐标方程是,以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是 (为参数).

(1)将曲线的极坐标方程化为直角坐标方程;

(2)若直线与曲线相交于两点,且,求直线的倾斜角的值.

查看答案和解析>>

同步练习册答案