相关习题
 0  264084  264092  264098  264102  264108  264110  264114  264120  264122  264128  264134  264138  264140  264144  264150  264152  264158  264162  264164  264168  264170  264174  264176  264178  264179  264180  264182  264183  264184  264186  264188  264192  264194  264198  264200  264204  264210  264212  264218  264222  264224  264228  264234  264240  264242  264248  264252  264254  264260  264264  264270  264278  266669 

科目: 来源: 题型:

【题目】某企业生产的某种产品被检测出其中一项质量指标存在问题.该企业为了检查生产该产品的甲、乙两条流水线的生产情况,随机地从这两条流水线上生产的大量产品中各抽取50件产品作为样本,测出它们的这一项质量指标值.若该项质量指标值落在内,则为合格品,否则为不合格品.如图是甲流水线样本的频数分布表和乙流水线样本的频率分布直方图.

(1)根据频率分布直方图,估计乙流水线生产的产品该质量指标值的中位数;

(2)若将频率视为概率,某个月内甲、乙两条流水线均生产了5000件产品,则甲、乙两条流水线分别生产出不合格品约多少件?

(3)根据已知条件完成下面列联表,并回答是否有的把握认为“该企业生产的这种产品的质量指标值与甲、乙两条流水线的选择有关”?

甲流水线

乙流水线

合计

合格品

不合格品

合计

附:,其中.

临界值表:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的左右顶点是双曲线的顶点,且椭圆的上顶点到双曲线的渐近线的距离为

(1)求椭圆的方程;

(2)若直线相交于两点,与相交于两点,且,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

1)若的一个极值点,判断的单调性;

2)若有两个极值点,且,证明:.

查看答案和解析>>

科目: 来源: 题型:

【题目】从某地区随机抽测120名成年女子的血清总蛋白含量(单位:),由测量结果得如图频数分布表:

1)①仔细观察表中数据,算出该样本平均数______

②由表格可以认为,该地区成年女子的血清总蛋白含量Z服从正态分布.其中近似为样本平均数近似为样本标准差s.经计算,该样本标准差.

医学上,Z过高或过低都为异常,Z的正常值范围通常取关于对称的区间,且Z位于该区间的概率为,试用该样本估计该地区血清总蛋白正常值范围.

120名成年女人的血清总蛋白含量的频数分布表

分组

频数f

区间中点值x

2

65

130

8

67

536

12

69

828

15

71

1065

25

73

1825

24

75

1800

16

77

1232

10

79

790

7

81

567

1

83

83

合计

120

8856

2)结合(1)中的正常值范围,若该地区有5名成年女子检测血清总蛋白含量,测得数据分别为83.2807359.577,从中随机抽取2名女子,设血清总蛋白含量不在正常值范围的人数为X,求X的分布列和数学期望.

附:若,则.

查看答案和解析>>

科目: 来源: 题型:

【题目】在一栋6层楼房里,每个房间的门牌号均为三位数,首位代表楼层号,后两位代表房间号,如218表示的是第2层第18号房间,现已知有宝箱藏在如下图18个房间里的某一间,其中甲同学只知道楼层号,乙同学只知道房间号,不知道楼层号,现有以下甲乙两人的一段对话:

甲同学说:我不知道,你肯定也不知道;

乙同学说:本来我也不知道,但是现在我知道了;

甲同学说:我也知道了.

根据上述对话,假设甲乙都能做出正确的推断,则藏有宝箱的房间的门牌号是______.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性;

(2)当时,若函数的导函数的图象与轴交于 两点,其横坐标分别为 ,线段的中点的横坐标为,且 恰为函数的零点,求证: .

查看答案和解析>>

科目: 来源: 题型:

【题目】选修4-4:极坐标与参数方程

在平面直角坐标系中,曲线的参数方程为为参数).

1)求曲线的普通方程;

2)经过点(平面直角坐标系中点)作直线交曲线两点,若恰好为线段的三等分点,求直线的斜率.

查看答案和解析>>

科目: 来源: 题型:

【题目】将边长为2的正沿着高折起,使,若折起后四点都在球的表面上,则球的表面积为(

A. B. C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】在国家积极推动美丽乡村建设的政策背景下,各地根据当地生态资源打造了众多特色纷呈的乡村旅游胜地.某人意图将自己位于乡村旅游胜地的房子改造成民宿用于出租,在旅游淡季随机选取100天,对当地已有的六间不同价位的民宿进行跟踪,统计其出租率),设民宿租金为(单位:元/日),得到如图所示的数据散点图.

1)若用“出租率”近似估计旅游淡季民宿每天租出去的概率,求租金为388元的那间民宿在淡季内的三天中至少有2天闲置的概率.

2)①根据散点图判断,哪个更适合于此模型(给出判断即可,不必说明理由)?根据判断结果求回归方程;

②若该地一年中旅游淡季约为280天,在此期间无论民宿是否出租,每天都要付出的固定成本,若民宿出租,则每天需要再付出的日常支出成本.试用①中模型进行分析,旅游淡季民宿租金约定为多少元时,该民宿在这280天的收益达到最大?

附:对于一组数据,…,,其回归直线的斜率和截距的最小二乘估计分别为.

参考数据:记

.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知直线与抛物线相交于两个不同点,点是抛物线在点处的切线的交点。

(1)若直线经过抛物线的焦点,求证:

(2)若,且直线经过点,求的最小值。

查看答案和解析>>

同步练习册答案