科目: 来源: 题型:
【题目】如图已知椭圆,是长轴的一个端点,弦过椭圆的中心,且,.
(Ⅰ)求椭圆的方程:
(Ⅱ)设为椭圆上异于且不重合的两点,且的平分线总是垂直于轴,是否存在实数,使得,若存在,请求出的最大值,若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知在四棱锥中,底面是边长为的正方形,是正三角形,,分别是的中点。
(1)求证:;
(2)求平面与平面所成锐二面角的大小;
(3)线段上是否存在一个动点,使得直线与平面所成角为,若存在,求线段的长度,若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,四棱锥P-ABCD中,侧面PAD为等边三角形且垂直于底面ABCD, E是PD的中点.
(1)证明:直线 平面PAB;
(2)点M在棱PC 上,且直线BM与底面ABCD所成角为 ,求二面角M-AB-D的余弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】设f(x)=x3+ax2+bx+1的导数f′(x)满足f′(1)=2a,f′(2)=-b,其中常数a,b∈R.
(1)求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)设g(x)=f′(x)e-x,求函数g(x)的极值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆 的离心率为,两焦点与短轴的一个端点的连线构成的三角形面积为.
(I)求椭圆的方程;
(II)设与圆相切的直线交椭圆于,两点(为坐标原点),的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在三棱锥中,,,,,分别是,的中点,在上且.
(I)求证:;
(II)求直线与平面所成角的正弦值;
(III)在线段上是否存在点,使二面角的大小为?若存在,求出的长;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com