科目: 来源: 题型:
【题目】已知椭圆的离心率为,点在椭圆上.直线过点,且与椭圆 交于,两点,线段的中点为.
(I)求椭圆的方程;
(Ⅱ)点为坐标原点,延长线段与椭圆交于点,四边形能否为平行四边形?若能,求出此时直线的方程,若不能,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,直线不与坐标轴垂直,且与抛物线有且只有一个公共点.
(1)当点的坐标为时,求直线的方程;
(2)设直线与轴的交点为,过点且与直线垂直的直线交抛物线于,两点.当时,求点的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】在四棱锥P﹣ABCD中,底面是边长为2的菱形,∠BAD=60°,PB=PD=2,PA,AC∩BD=O
(1)设平面ABP∩平面DCP=l,证明:l∥AB
(2)若E是PA的中点,求三棱锥P﹣BCE的体积VP﹣BCE.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形,点O是对角线AC与BD的交点,AB=2,∠BAD=60°,M是PD的中点.
(Ⅰ)求证:OM∥平面PAB;
(Ⅱ)平面PBD⊥平面PAC;
(Ⅲ)当三棱锥C﹣PBD的体积等于 时,求PA的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】某中学有初中学生1800人,高中学生1200人. 为了解学生本学期课外阅读时间,现采用分层抽样的方法,从中抽取了100名学生,先统计了他们课外阅读时间,然后按“初中学生”和“高中学生”分为两组,再将每组学生的阅读时间(单位:小时)分为5组:,,,,,并分别加以统计,得到如图所示的频率分布直方图.
(Ⅰ)写出的值;试估计该校所有学生中,阅读时间不小于30个小时的学生人数;
(Ⅱ)从阅读时间不足10个小时的样本学生中随机抽取2人,求至少抽到1名高中生的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆的离心率为,两焦点与短轴的一个端点的连线构成的三角形面积为.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设与圆O:相切的直线l交椭圆C于A,B两点(O为坐标原点),求△AOB面积的最大值。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com