相关习题
 0  264099  264107  264113  264117  264123  264125  264129  264135  264137  264143  264149  264153  264155  264159  264165  264167  264173  264177  264179  264183  264185  264189  264191  264193  264194  264195  264197  264198  264199  264201  264203  264207  264209  264213  264215  264219  264225  264227  264233  264237  264239  264243  264249  264255  264257  264263  264267  264269  264275  264279  264285  264293  266669 

科目: 来源: 题型:

【题目】有下列四个命题:

①若pq的充分不必要条件,则¬p是¬q的必要不充分条件;

②若命题px≥0x2+10,则¬px00x02+1≤0

③在ABC中,ABsinAsinB的充要条件;

④命题:当1t4时方程1表示焦点在x轴上的椭圆,为真命题.

其中真命题的序号是_____

查看答案和解析>>

科目: 来源: 题型:

【题目】某中学图书馆举行高中志愿者检索图书的比赛,从高一、高二两个年级各抽取10名志愿者参赛。在规定时间内,他们检索到的图书册数的茎叶图如图所示,规定册数不小于20的为优秀.

() 从两个年级的参赛志愿者中各抽取两人,求抽取的4人中至少一人优秀的概率;

() 从高一10名志愿者中抽取一人,高二10名志愿者中抽取两人,3人中优秀人数记为,求的分布列和数学期望.

查看答案和解析>>

科目: 来源: 题型:

【题目】 下列结论错误的是

A. 命题:“若,则”的逆否命题是“若,则

B. ”是“”的充分不必要条件

C. 命题:“ ”的否定是“

D. 若“”为假命题,则均为假命题

查看答案和解析>>

科目: 来源: 题型:

【题目】设函数.

(Ⅰ) 求曲线在点处的切线方程;

(Ⅱ) 讨论函数的单调性;

(Ⅲ) 设,当时,若对任意的,存在,使得,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】某车间将10名技工平均分成甲、乙两组加工某种零件,在单位时间内每个技工加工的合格零件数,按十位数字为茎,个位数字为叶得到的茎叶图如图所示.已知甲、乙两组数据的平均数都为10.

(1)求的值;

(2)分别求出甲、乙两组数据的方差,并由此分析两组技工的加工水平;

查看答案和解析>>

科目: 来源: 题型:

【题目】已知数列的前n项和是等差数列,且.

)求数列的通项公式;

)令.求数列的前n项和.

查看答案和解析>>

科目: 来源: 题型:

【题目】2019年的流感来得要比往年更猛烈一些据四川电视台“新闻现场”播报,近日四川省人民医院一天的最高接诊量超过了一万四千人,成都市妇女儿童中心医院接诊量每天都在九千人次以上这些浩浩荡荡的看病大军中,有不少人都是因为感冒来的医院某课外兴趣小组趁着寒假假期空闲,欲研究昼夜温差大小与患感冒人数之间的关系,他们分别到成都市气象局与跳伞塔社区医院抄录了去年16月每月20日的昼夜温差情况与患感冒就诊的人数,得到如下资料:

日期

120

220

320

420

520

620

昼夜温差

10

11

13

12

8

6

就诊人数

22

25

29

26

16

12

该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.

若选取的是1月与6月的两组数据,请根据2月至5月份的数据,求出y关于x的线性回归方程

若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?

参考公式:

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,四棱锥的底面是菱形,底面分别是的中点,.

I)证明:

II)求直线与平面所成角的正弦值;

III)在边上是否存在点,使所成角的余弦值为,若存在,确定点位置;若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】点外卖现已成为上班族解决午餐问题的一种流行趋势.某配餐店为扩大品牌影响力,决定对新顾客实行让利促销,规定:凡点餐的新顾客均可获赠10元或者16元代金券一张,中奖率分别为,每人限点一餐,且100%中奖.现有A公司甲、乙、丙、丁四位员工决定点餐试吃.

(Ⅰ) 求这四人中至多一人抽到16元代金券的概率;

(Ⅱ) 这四人中抽到10元、16元代金券的人数分别用表示,记,求随机变量的分布列和数学期望.

查看答案和解析>>

科目: 来源: 题型:

【题目】某公司采用招考方式引进人才,规定必须在三个测试点中任意选取两个进行测试,若在这两个测试点都测试合格,则可参加面试,否则不被录用,已知考生在每个测试点测试结果互不影响,若考生小李和小王一起前来参加招考,小李在测试点测试合格的概率分别为,小王在上述三个测试点测试合格的概率都是.

1)问小李选择哪两个测试点测试才能使得可以参加面试的可能性最大?请说明理由;

2)假设小李选择测试点进行测试,小王选择测试点进行测试,记为两人在各测试点测试合格的测试点个数之和,求随机变量的分布列及数学期望.

查看答案和解析>>

同步练习册答案