相关习题
 0  264102  264110  264116  264120  264126  264128  264132  264138  264140  264146  264152  264156  264158  264162  264168  264170  264176  264180  264182  264186  264188  264192  264194  264196  264197  264198  264200  264201  264202  264204  264206  264210  264212  264216  264218  264222  264228  264230  264236  264240  264242  264246  264252  264258  264260  264266  264270  264272  264278  264282  264288  264296  266669 

科目: 来源: 题型:

【题目】己知函数的导数(e为自然对数的底数).

I.时,求曲线在点()处的切线方程;

II.若当时,不等式恒成立,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知数列{an}满足,且

(1)求证:数列是等差数列,并求出数列的通项公式;

(2)求数列的前项和.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的离心率为,点A为椭圆的右顶点,点B为椭圆的上顶点,点F为椭圆的左焦点,且的面积是

Ⅰ.求椭圆C的方程;

Ⅱ.设直线与椭圆C交于PQ两点,点P关于x轴的对称点为不重合),则直线x轴交于点H,求面积的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】若数列对任意满足,下面给出关于数列的四个命题:①可以是等差数列,②可以是等比数列;③可以既是等差又是等比数列;④可以既不是等差又不是等比数列;则上述命题中,正确的个数为(

A. 1个B. 2个C. 3个D. 4个

查看答案和解析>>

科目: 来源: 题型:

【题目】“五一”期间,甲乙两个商场分别开展促销活动.

(Ⅰ)甲商场的规则是:凡购物满100元,可抽奖一次,从装有大小、形状相同的4个白球、4个黑球的袋中摸出4个球,中奖情况如下表:

摸出的结果

获得奖金(单位:元)

4个白球或4个黑球

200

3个白球1个黑球或3个黑球1个白球

20

2个黑球2个白球

10

为抽奖一次获得的奖金,求的分布列和期望.

(Ⅱ)乙商场的规则是:凡购物满100元,可抽奖10.其中,第次抽奖方法是:从编号为的袋中(装有大小、形状相同的个白球和个黑球)摸出个球,若该次摸出的个球颜色都相同,则可获得奖金元;记第次获奖概率.设各次摸奖的结果互不影响,最终所获得的总奖金为10次奖金之和.

①求证:

②若某顾客购买120元的商品,不考虑其它因素,从获得奖金的期望分析,他应该选择哪一家商场?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,四边形是正方形,平面分别为的中点.

(1)求证:平面

(2)求平面与平面所成锐二面角的大小;

(3)在线段上是否存在一点,使直线与直线所成的角为?若存在,求出线段的长;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】甲、乙两台机床生产同一型号零件,记生产的零件的尺寸为,相关行业质检部门规定:若,则该零件为优等品;若,则该零件为中等品;其余零件为次品.现分别从甲、乙机床生产的零件中各随机抽取50件,经质里检测得到下表数据:

尺寸

甲机床零件频数

2

3

20

20

4

1

乙机床零件频数

3

5

17

13

8

4

(Ⅰ)设生产每件产品的利润为:优等品3元,中等品1元,次品亏本1.若将频率视为概率,试估算甲机床生产一件零件的利润的数学期望;

(Ⅱ)根据已知条件完成下面的列联表,并据此数据回答:是否有的把握认为零件优等与否和所用机床有关

甲机床

乙机床

合计

优等品

非优等品

合计

查看答案和解析>>

科目: 来源: 题型:

【题目】某市近郊有一块大约的接近正方形的荒地,地方政府准备在此建一个综合性休闲广场,首先要建设如图所示的一个矩形场地,其中总面积为3000平方米,其中阴影部分为通道,通道宽度为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为平方米.

1)分别用表示的函数关系式,并给出定义域;

2)怎样设计能使取得最大值,并求出最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知,点满足,记点的轨迹为.斜率为的直线过点,且与轨迹相交于两点.

1)求轨迹的方程;

2)求斜率的取值范围;

3)在轴上是否存在定点,使得无论直线绕点怎样转动,总有成立?如果存在,求出定点;如果不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的左顶点为,右焦点为,直线轴相交于点,且的中点.

(Ⅰ)求椭圆的离心率;

(Ⅱ)过点的直线与椭圆相交于两点,都在轴上方,并且之间,且到直线的距离是到直线距离的倍.

①记的面积分别为,求

②若原点到直线的距离为,求椭圆方程.

查看答案和解析>>

同步练习册答案