科目: 来源: 题型:
【题目】下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨)标准煤的几组对照数据
(1)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;
(2)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(1)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?
参考公式:
查看答案和解析>>
科目: 来源: 题型:
【题目】(本小题10分) 从3名男生和名女生中任选2人参加比赛。
①求所选2人都是男生的概率;
②求所选2人恰有1名女生的概率;
③求所选2人中至少有1名女生的概率
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆的左顶点为,右焦点为,过作垂直于轴的直线交该椭圆于,两点,直线的斜率为.
(Ⅰ)求椭圆的离心率;
(Ⅱ)若的外接圆在处的切线与椭圆交另一点于,且的面积为,求椭圆的方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,正方形与梯形所在的平面互相垂直, ,,点在线段上.
(Ⅰ) 若点为的中点,求证:平面;
(Ⅱ) 求证:平面平面;
(Ⅲ) 当平面与平面所成二面角的余弦值为时,求的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,长方体ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,点E是线段AB中点.
(1)证明:D1E⊥CE;
(2)求二面角D1﹣EC﹣D的大小的余弦值;
(3)求A点到平面CD1E的距离.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数,(为自然对数的底)。
(Ⅰ)求函数的单调区间;
(Ⅱ)若存在均属于区间的,,且,使,证明:;
(Ⅲ)对于函数与定义域内的任意实数,若存在常数,,使得和都成立,则称直线为函数与的分界线。试探究当时,函数与是否存在“分界线”?若存在,请给予证明,并求出,的值;若不存在,请说明理由。
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆的两个焦点与短轴的一个端点是等边三角形的三个顶点,且长轴长为4.
求椭圆E的方程;
若A是椭圆E的左顶点,经过左焦点F的直线l与椭圆E交于C,D两点,求与为坐标原点的面积之差绝对值的最大值.
已知椭圆E上点处的切线方程为,T为切点若P是直线上任意一点,从P向椭圆E作切线,切点分别为N,M,求证:直线MN恒过定点,并求出该定点的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com