相关习题
 0  264146  264154  264160  264164  264170  264172  264176  264182  264184  264190  264196  264200  264202  264206  264212  264214  264220  264224  264226  264230  264232  264236  264238  264240  264241  264242  264244  264245  264246  264248  264250  264254  264256  264260  264262  264266  264272  264274  264280  264284  264286  264290  264296  264302  264304  264310  264314  264316  264322  264326  264332  264340  266669 

科目: 来源: 题型:

【题目】年以来精准扶贫政策的落实,使我国扶贫工作有了新进展,贫困发生率由年底的下降到年底的,创造了人类减贫史上的的中国奇迹.“贫困发生率”是指低于贫困线的人口占全体人口的比例,年至年我国贫困发生率的数据如下表:

年份

2012

2013

2014

2015

2016

2017

2018

贫困发生率

10.2

8.5

7.2

5.7

4.5

3.1

1.4

(1)从表中所给的个贫困发生率数据中任选两个,求两个都低于的概率;

(2)设年份代码,利用线性回归方程,分析span>年至年贫困发生率与年份代码的相关情况,并预测年贫困发生率.

附:回归直线的斜率和截距的最小二乘估计公式分别为:

(的值保留到小数点后三位)

查看答案和解析>>

科目: 来源: 题型:

【题目】(题文)如图在三棱锥中, 分别为棱的中点,已知

求证(1)直线平面

(2)平面 平面.

查看答案和解析>>

科目: 来源: 题型:

【题目】如果函数的定义域为,且存在实常数,使得对于定义域内任意,都有成立,则称此函数具有“性质.

1)判断函数是否具有“性质”,若具有“性质”,求出所有的值的集合,若不具有“性质”,请说明理由;

2)已知函数具有“性质”,且当时,,求函数在区间上的值域;

3)已知函数既具有“性质”,又具有“性质”,且当时,,若函数的图像与直线2017个公共点,求实数的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】椭圆的顶点为,左、右焦点分别为,过点A且斜率为的直线与y轴交于点P,与椭圆交于另一个点B,且点Bx轴上的射影恰好为点.

1)求椭圆C的标准方程;

2M为椭圆C上一动点,是椭圆C长轴上的一个点,直线MQ与椭圆C的另一个交点为N,令,若t值与点M的位置无关,则称此时的点Q稳定点,试求出所有稳定点,若没有,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】某种植园在芒果临近成熟时,随机从一些芒果树上摘下100个芒果,其质量分别在(单位:克)中,经统计,频率分布直方图如图所示:

1)估计这组数据的平均数(同一组中的数据以这组数据所在区间中点的值作代表);

2)现按分层抽样从质量为的芒果中随机抽取5个,再从这5个中随机抽取2个,求这2个芒果都来自同一个质量区间的概率;

3)某经销商来收购芒果,同一组中的数据以这组数据所在区间中点的值作代表,用样本估计总体,该种植园中还未摘下的芒果大约还有1000个,经销商提出以下两种收购方案:

方案①:所有芒果以9/千克收购

方案②:对质量低于250克的芒果以2/个收购,对质量高于或等于250克的芒果以3/个收购.通过计算确定种植园选择哪种方案获利更多.

参考数据:.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知定义在区间上两个函数.

1)求函数的最大值

2)若在区间单调,求实数的取值范围;

3)当时,若对于任意,总存在,使恒成立,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】某地随着经济的发展,居民收入逐年增长该地一建设银行统计连续五年的储蓄存款(年底余额)得到下表:

年份x

2014

2015

2016

2017

2018

储蓄存款y(千亿元)

5

6

7

8

10

为便于计算,工作人员将上表的数据进行了处理(令),得到下表:

时间t

1

2

3

4

5

储蓄存款z

0

1

2

3

5

1)求z关于t的线性回归方程;

2)通过(1)中的方程,求出y关于x的回归方程;

3)用所求回归方程预测到2020年年底,该地储蓄存款额可达多少?

附:线性回归方程,其中.

查看答案和解析>>

科目: 来源: 题型:

【题目】勒洛三角形是具有类似圆的“定宽性”的面积最小的曲线,它由德国机械工程专家,机构运动学家勒洛首先发现,其作法是:以等边三角形每个顶点为圆心,以边长为半径,在另两个顶点间作一段弧,三段弧围成的曲边三角形就是勒洛三角形,现在勒洛三角形中随机取一点,则此点取自正三角形外的概率为( )

A.B.

C.D.

查看答案和解析>>

科目: 来源: 题型:

【题目】定义域和值域均为(常数)的函数y=g(x)的图像如图所示,给出下列四个命题:

1)方程有且仅有三个解;

2)方程有且仅有三个解;

3)方程有且仅有九个解;

4)方程有且仅有一个解;

那么,其中正确命题的个数是(

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目: 来源: 题型:

【题目】设单调函数的定义域为,值域为,如果单调函数使得函数的值域也是,则称函数是函数的一个保值域函数.已知定义域为的函数,函数互为反函数,且的一个保值域函数”,的一个保值域函数,则__________

查看答案和解析>>

同步练习册答案