相关习题
 0  264158  264166  264172  264176  264182  264184  264188  264194  264196  264202  264208  264212  264214  264218  264224  264226  264232  264236  264238  264242  264244  264248  264250  264252  264253  264254  264256  264257  264258  264260  264262  264266  264268  264272  264274  264278  264284  264286  264292  264296  264298  264302  264308  264314  264316  264322  264326  264328  264334  264338  264344  264352  266669 

科目: 来源: 题型:

【题目】定义为不超过的最大整数,例如.已知是等比数列,若,且前项和为

1)若不等式对任意的恒成立,求实数的取值范围;

2)求的通项公式;

3)若,求数列的前项和

查看答案和解析>>

科目: 来源: 题型:

【题目】日,小刘从各个渠道融资万元,在某大学投资一个咖啡店,日正式开业,已知开业第一年运营成本为万元,由于工人工资不断增加及设备维修等,以后每年成本增加万元,若每年的销售额为万元,用数列表示前年的纯收入.(注:纯收入年的总收入年的总支出投资额)

1)试求年平均利润最大时的年份(年份取正整数)并求出最大值.

2)若前年的收入达到最大值时,小刘计划用前年总收入的对咖啡店进行重新装修,请问:小刘最早从哪一年对咖啡店进行重新装修(年份取整数)?并求小刘计划装修的费用.

查看答案和解析>>

科目: 来源: 题型:

【题目】海关对同时从三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如下表所示,工作人员用分层抽样的方法从这些商品中共抽取6件进行检测.

地区




数量

50

150

100

1)求这6件样品中来自各地区商品的数量;

2)若在这6件样品中随机抽取2件送往甲机构进一步检测,求这2件商品来自相同地区的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知直线的极坐标方程是,以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,曲线C的参数方程是,(为参数).

(1)求直线被曲线C截得的弦长;

(2)从极点作曲线C的弦,求各弦中点轨迹的极坐标方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】小明设计了一款正四棱锥形状的包装盒,如图所示,是边长为的正方形硬纸片,切去阴影部分所示的四个全等的等腰三角形,再沿虚线折起,使得四个点重合于图中的点,正好形成一个正四棱锥形状的包装盒,设正四棱锥底面正方形的边长为.

1)试用表示该四棱锥的高度,并指出的取值范围;

2)若要求侧面积不小于,求该四棱锥的高度的最大值,并指出此时该包装盒的容积.

查看答案和解析>>

科目: 来源: 题型:

【题目】2018年12月18日上午10时,在人民大会堂举行了庆祝改革开放40周年大会.40年众志成城,40年砥砺奋进,40年春风化雨,中国人民用双手书写了国家和民族发展的壮丽史诗.会后,央视媒体平台,收到了来自全国各地的纪念改革开放40年变化的老照片,并从众多照片中抽取了100张照片参加“改革开放40年图片展”,其作者年龄集中在之间,根据统计结果,做出频率分布直方图如下:

(Ⅰ)求这100位作者年龄的样本平均数和样本方差(同一组数据用该区间的中点值作代表);

(Ⅱ)由频率分布直方图可以认为,作者年龄X服从正态分布,其中近似为样本平

均数近似为样本方差

(i)利用该正态分布,求

(ii)央视媒体平台从年龄在的作者中,按照分层抽样的方法,抽出了7人参加“纪念改革开放40年图片展”表彰大会,现要从中选出3人作为代表发言,设这3位发言者的年龄落在区间的人数是Y,求变量Y的分布列和数学期望.附:,若,则

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四棱锥中,底面是平行四边形,,侧面底面分别为的中点,点在线段.

1)若的中点,求证:平面平面;

2)求证:平面;

3)若,求点到平面的距离.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,抛物线关于轴对称,它的顶点在坐标原点,点均在抛物线上.

1)写出该抛物线的方程及其准线方程;

2)当的斜率存在且倾斜角互补时,求的值及直线的斜率.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知椭圆C:的左、右项点分别为A1,A2,左右焦点分别为F1,F2,离心率为,|F1F2|=,O为坐标原点.

(1)求椭圆C的方程;

(2)设过点P(4,m)的直线PA1,PA2与椭圆分别交于点M,N,其中m>0,求的面积S的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,椭圆的离心率,且椭圆C的短轴长为.

(1)求椭圆的方程;

(2)设椭圆上的三个动点.

i)若直线过点D,且点是椭圆的上顶点,求面积的最大值;

ii)试探究:是否存在是以为中心的等边三角形,若存在,请给出证明;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案