相关习题
 0  264185  264193  264199  264203  264209  264211  264215  264221  264223  264229  264235  264239  264241  264245  264251  264253  264259  264263  264265  264269  264271  264275  264277  264279  264280  264281  264283  264284  264285  264287  264289  264293  264295  264299  264301  264305  264311  264313  264319  264323  264325  264329  264335  264341  264343  264349  264353  264355  264361  264365  264371  264379  266669 

科目: 来源: 题型:

【题目】已知函数.

1)当时,求函数的单调区间;

2)若存在与函数的图象都相切的直线,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

)求方程的实数解;

)如果数列满足),是否存在实数,使得对所有的都成立?证明你的结论.

)在()的条件下,设数列的前项的和为,证明:

查看答案和解析>>

科目: 来源: 题型:

【题目】(本小题满分12分,()小问6分,()小问6分)一家公司计划生产某种小型产品的月固定成本为万元,每生产万件需要再投入万元.设该公司一个月内生产该小型产品万件并全部销售完,每万件的销售收入为万元,且每万件国家给予补助万元. 为自然对数的底数,是一个常数.

)写出月利润(万元)关于月产量(万件)的函数解析式;

)当月生产量在万件时,求该公司在生产这种小型产品中所获得的月利润最大值(万元)及此时的月生产量值(万件). (注:月利润=月销售收入+月国家补助-月总成本).

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,离心率为,直线的两个交点间的距离为.

)求椭圆的方程;

)分别过满足,设的上半部分分别交于两点,求四边形面积的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知,函数.

)若函数上递减, 求实数的取值范围;

)当时,求的最小值的最大值;

)设,求证:.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四棱锥中,底面为梯形,平面分别是的中点.

)求证:平面

)若与平面所成的角为,求线段的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】[选修4—4:坐标系与参数方程]

在直角坐标系中,曲线的方程为.以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为

1)求的直角坐标方程;

2)若有且仅有三个公共点,求的方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在三棱锥中,⊥底面的中点.

已知.求:

(1)三棱锥PABC的体积;

(2)异面直线BCAD所成角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】某学生对其亲属30人的饮食习惯进行了一次调查,并用如图所示的茎叶图表示30人的饮食指数(说明:图中饮食指数低于70的人,饮食以蔬菜为主;饮食指数高于70的人,饮食以肉类为主).

(1)根据以上数据完成下列列联表:

主食蔬菜

主食肉类

总计

50岁以下

50岁以上

总计

(2)能否有99%的把握认为其亲属的饮食习惯与年龄有关?并写出简要分析.

参考公式和数据:.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目: 来源: 题型:

【题目】2020年开始,国家逐步推行全新的高考制度,新高考不再分文理科,采用3+3模式,其中语文、数学、外语三科为必考科目,满分各150分,另外考生还要依据想考取的高校及专业的要求,结合自己的兴趣爱好等因素,在思想政治、历史、地理、物理、化学、生物6门科目中自选3门参加考试(63),每科目满分100.为了应对新高考,某高中从高一年级1000名学生(其中男生550人,女生450人)中,根据性别分层,采用分层抽样的方法抽取名学生进行调查.

1)已知抽取的名学生中含男生55人,求的值;

2)为了了解学生对自选科目中“物理”和“地理”两个科目的选课意向,对在(1)条件下抽取到的名学生进行问卷调查(假定每名学生在这两个科目中必须选择一个科目且只能选择一个科目),如表是根据调查结果得到的列联表,请将列联表补充完整,并判断是否有的把握认为选择科目与性别有关?说明你的理由;

选择“物理”

选择“地理”

总计

男生

10

女生

25

总计

3)在抽取到的选择“地理”的学生中按分层抽样抽取6名,再从这6名学生中随机抽取3人,设这3人中女生的人数为,求的分布列及数学期望.

附参考公式及数据:,其中.

0.05

0.01

3.841

6.635

查看答案和解析>>

同步练习册答案