相关习题
 0  264186  264194  264200  264204  264210  264212  264216  264222  264224  264230  264236  264240  264242  264246  264252  264254  264260  264264  264266  264270  264272  264276  264278  264280  264281  264282  264284  264285  264286  264288  264290  264294  264296  264300  264302  264306  264312  264314  264320  264324  264326  264330  264336  264342  264344  264350  264354  264356  264362  264366  264372  264380  266669 

科目: 来源: 题型:

【题目】如图,四棱锥中,底面为矩形, 的中点。

1)证明: 平面;

2)设 ,三棱锥的体积 ,求A到平面PBC的距离。

查看答案和解析>>

科目: 来源: 题型:

【题目】在四棱锥中,平面与平面所成的角是的中点,在线段上,且满足.

1)求二面角的余弦值;

2)在线段上是否存在点,使得与平面所成角的余弦值是,若存在,求的长;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在直角梯形中,,点中点,且,现将三角形沿折起,使点到达点的位置,且与平面所成的角为.

(1)求证:平面平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知点在椭圆上,椭圆的右焦点,直线过椭圆的右顶点,与椭圆交于另一点,与轴交于点.

1)求椭圆的方程;

2)若为弦的中点,是否存在定点,使得恒成立?若存在,求出点的坐标,若不存在,请说明理由;

3)若,交椭圆于点,求的范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系xoy中,以坐标原点O为极点,x轴正半轴为极轴建立极坐标系。已知曲线C的极坐标方程为,过点的直线l的参数方程为(为参数),直线l与曲线C交于MN两点。

(1)写出直线l的普通方程和曲线C的直角坐标方程:

(2)若成等比数列,求a的值。

查看答案和解析>>

科目: 来源: 题型:

【题目】

已知函数f(x)=x3ax2bxc,曲线yf(x)在点x=1处的切线方程为

ly=3x+1,且当x时,yf(x)有极值.

(1)求abc的值;

(2)求yf(x)在[-3,1]上的最大值和最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知以M为圆心的圆M:x2+y2-12x-14y+60=0及其上一点A(2,4).

(1)设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;

(2)设平行于OA的直线l与圆M相交于B,C两点,且BC=OA,

求直线l的方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】(本小题满分12分)

如图在直三棱柱ABC—A1B1C1中,AC=3BC=4AB=5AA1=4,DAB

中点.

(1) 求证: AC⊥BC1

(2) 求证:AC1平面CDB1

(3) 求异面直线AC1B1C所成角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】两地相距千米,汽车从地匀速行驶到地,速度不超过千米小时,已知汽车每小时的运输成本(单位:元)由可变部分和固定部分两部分组成:可变部分与速度的平方成正比,比例系数为,固定部分为元,

(1)把全程运输成本()表示为速度(千米小时)的函效:并求出当时,汽车应以多大速度行驶,才能使得全程运输成本最小;

(2)随着汽车的折旧,运输成本会发生一些变化,那么当,此时汽车的速度应调整为多大,才会使得运输成本最小,

查看答案和解析>>

科目: 来源: 题型:

【题目】

已知是递增数列,其前项和为,且

)求数列的通项

)是否存在使得成立?若存在,写出一组符合条件的的值;若不存在,请说明理由;

)设,若对于任意的,不等式

恒成立,求正整数的最大值.

查看答案和解析>>

同步练习册答案