相关习题
 0  264197  264205  264211  264215  264221  264223  264227  264233  264235  264241  264247  264251  264253  264257  264263  264265  264271  264275  264277  264281  264283  264287  264289  264291  264292  264293  264295  264296  264297  264299  264301  264305  264307  264311  264313  264317  264323  264325  264331  264335  264337  264341  264347  264353  264355  264361  264365  264367  264373  264377  264383  264391  266669 

科目: 来源: 题型:

【题目】若数列满足,且,则

①数列是等比数列;

②满足不等式:

③若函数R上单调递减,则数列是单调递减数列;

④存在数列中的连续三项,能组成三角形的三条边;

⑤满足等式:.

正确的序号是________

查看答案和解析>>

科目: 来源: 题型:

【题目】某高科技公司研究开发了一种新产品,生产这种新产品的每天固定成本为元,每生产件,需另投入成本为元,每件产品售价为元(该新产品在市场上供不应求可全部卖完).

(1)写出每天利润关于每天产量的函数解析式;

(2)当每天产量为多少件时,该公司在这一新产品的生产中每天所获利润最大.

查看答案和解析>>

科目: 来源: 题型:

【题目】某种大型医疗检查机器生产商,对一次性购买2台机器的客户,推出两种超过质保期后两年内的延保维修优惠方案:方案一:交纳延保金7000元,在延保的两年内可免费维修2次,超过2次每次收取维修费2000元;方案二:交纳延保金10000元,在延保的两年内可免费维修4次,超过4次每次收取维修费1000元.某医院准备一次性购买2台这种机器。现需决策在购买机器时应购买哪种延保方案,为此搜集并整理了50台这种机器超过质保期后延保两年内维修的次数,得下表:

维修次数

0

1

2

3

台数

5

10

20

15

以这50台机器维修次数的频率代替1台机器维修次数发生的概率,记X表示这2台机器超过质保期后延保的两年内共需维修的次数。

(1)求X的分布列;

(2)以所需延保金及维修费用的期望值为决策依据,医院选择哪种延保方案更合算?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示,四棱锥中,底面的中点.

(1)求证:平面

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】对于给定的正整数k,若数列{an}满足

=2kan对任意正整数n(n> k) 总成立,则称数列{an} 是“P(k)数列”.

(1)证明:等差数列{an}是“P(3)数列”;

若数列{an}既是“P(2)数列”,又是“P(3)数列”,证明:{an}是等差数列.

查看答案和解析>>

科目: 来源: 题型:

【题目】下列命题中,正确的命题是(  )

A.abcd,则acbdB.,则 ab

C.bc,则|a|b|a|cD.abcd,则acbd

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的离心率,连接椭圆的四个顶点得到的菱形的面积为4.

1)求椭圆的方程;

2)设过点的直线与椭圆相交另一点,若,求直线的倾斜角.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,正四棱柱的底面边长为,侧棱长为1,求:

(1)直线与直线所成角的余弦值;

(2)平面与平面所成二面角的正弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在多面体中,四边形是菱形,⊥平面.

(1)求证:平面⊥平面

(2)若与平面所成夹角为,且,求二面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】”是“直线与直线平行”的( )

A. 充分而不必要条件B. 必要而充分不条件

C. 充要条件D. 既不充分也不必要条件

查看答案和解析>>

同步练习册答案