相关习题
 0  264199  264207  264213  264217  264223  264225  264229  264235  264237  264243  264249  264253  264255  264259  264265  264267  264273  264277  264279  264283  264285  264289  264291  264293  264294  264295  264297  264298  264299  264301  264303  264307  264309  264313  264315  264319  264325  264327  264333  264337  264339  264343  264349  264355  264357  264363  264367  264369  264375  264379  264385  264393  266669 

科目: 来源: 题型:

【题目】某调研机构,对本地岁的人群随机抽取人进行了一次生活习惯是否符合低碳观念的调查,将生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,结果显示,有人为“低碳族”,该人的年龄情况对应的频率分布直方图如图.

1)根据频率分布直方图,估计这名“低碳族”年龄的平均值,中位数;

2)若在“低碳族”且年龄在的两组人群中,用分层抽样的方法抽取人,试估算每个年龄段应各抽取多少人?

查看答案和解析>>

科目: 来源: 题型:

【题目】阿波罗尼斯(约公元前年)证明过这样一个命题:平面内到两定点距离之比为常数的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.若平面内两定点间的距离为,动点满足,则的最小值为(

A. B. C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系中,已知直线为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求曲线的直角坐标方程;

(2)设点的直角坐标为,直线与曲线的交点为,求的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在三棱锥中,的中点.

(1)证明:平面

(2)若点在棱上,且,求点到平面的距离.

查看答案和解析>>

科目: 来源: 题型:

【题目】2019年是新中国成立七十周年,新中国成立以来,我国文化事业得到了充分发展,尤其是党的十八大以来,文化事业发展更加迅速,下图是从2013 年到 2018 年六年间我国公共图书馆业机构数(个)与对应年份编号的散点图(为便于计算,将 2013 年编号为 1,2014 年编号为 2,…,2018年编号为 6,把每年的公共图书馆业机构个数作为因变量,把年份编号从 1 到 6 作为自变量进行回归分析),得到回归直线,其相关指数,给出下列结论,其中正确的个数是( )

①公共图书馆业机构数与年份的正相关性较强

②公共图书馆业机构数平均每年增加13.743个

③可预测 2019 年公共图书馆业机构数约为3192个

A.0B.1C.2D.3

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系,曲线的参数方程为(其中为参数)曲线的普通方程为,以坐标原点为极点,以轴正半轴为极轴建立极坐标系.

1)求曲线和曲线的极坐标方程;

2)射线:依次与曲线和曲线交于两点,射线:依次与曲线和曲线交于两点,求的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知抛物线,过其焦点的直线与抛物线相交于两点,满足.

1)求抛物线的方程;

2)已知点的坐标为,记直线的斜率分别为,求的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知圆的圆心为,且直线与圆相切,设直线的方程为,若点在直线上,过点作圆的切线,切点为.

(1)求圆的标准方程;

(2)若,试求点的坐标;

(3)若点的坐标为,过点作直线与圆交于两点,当时,求直线的方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知.

1)令,求证:有唯一的极值点;

2)若点为函数上的任意一点,点为函数上的任意一点,求两点之间距离的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在多面体中,平面平面,四边形为正方形,四边形为梯形,且

(Ⅰ)求证:平面

(Ⅱ)求证:平面

(Ⅲ)在线段上是否存在点,使得平面?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案