科目: 来源: 题型:
【题目】已知数列{an}的首项, , .
(1)求证:数列为等比数列;
(2)记,若Sn<100,求最大正整数n;
(3)是否存在互不相等的正整数m,s,n,使m,s,n成等差数列,且am-1,as-1,an-1成等比数列?如果存在,请给以证明;如果不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)是定义域为R的奇函数,且满足f(x﹣2)=f(x+2),当x∈(0,2)时,f(x)=ln(x2﹣x+1),则方程f(x)=0在区间[0,8]上的解的个数是( )
A.3B.5C.7D.9
查看答案和解析>>
科目: 来源: 题型:
【题目】对关于的方程有近似解,必修一课本里研究过‘二分法’.现在结合导函数,介绍另一种方法‘牛顿切线法’.对曲线,估计零点的值在附近,然后持续实施如下‘牛顿切线法’的步骤:
在处作曲线的切线,交轴于点;
在处作曲线的切线,交轴于点;
在处作曲线的切线,交轴于点;
得到一个数列,它的各项就是方程的近似解,按照数列的顺序越来越精确.请回答下列问题:
(1)求的值;
(2)设,求的解析式(用表示);
(3)求该方程的近似解的这两种方法,‘牛顿切线法’和‘二分法’,哪一种更快?请给出你的判断和依据.(参照值:关于的方程有解)
查看答案和解析>>
科目: 来源: 题型:
【题目】某厂生产某种产品的年固定成本为250万元,每生产千件,需另投入成本为,当年产量不足80千件时,(万元);当年产量不小于80千件时,(万元).每件商品售价为0.05万元,通过市场分析,该厂生产的商品能全部销售完.
(1)写出年利润(万元)关于年产量(千件)的函数解析式;
(2)年产量为多少千件时,该厂在这一产品的生产中所获利润最大,最大利润是多少?
查看答案和解析>>
科目: 来源: 题型:
【题目】在直角坐标系中,以原点为极点,轴正半轴为极轴建立极坐标系.若曲线的极坐标方程为,点的极坐标为,在平面直角坐标系中,直线经过点,且倾斜角为.
(1)写出曲线的直角坐标方程以及点的直角坐标;
(2)设直线与曲线相交于,两点,求的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】2016年1月1日,我国全面实行二孩政策,某机构进行了街头调查,在所有参与调查的青年男女中,持“响应”“犹豫”和“不响应”态度的人数如下表所示:
响应 | 犹豫 | 不响应 | |
男性青年 | 500 | 300 | 200 |
女性青年 | 300 | 200 | 300 |
根据已知条件完成下面的列联表,并判断能否有的把握认为犹豫与否与性别有关?请说明理由.
犹豫 | 不犹豫 | 总计 | |
男性青年 | |||
女性青年 | |||
总计 | 1800 |
参考公式:
参考数据:
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目: 来源: 题型:
【题目】如图(1),等腰梯形,,,,,分别是的两个三等分点,若把等腰梯形沿虚线、折起,使得点和点重合,记为点, 如图(2).
(1)求证:平面平面;
(2)求平面与平面所成锐二面角的余弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.为曲线上的动点,点在射线上,且满足.
(Ⅰ)求点的轨迹的直角坐标方程;
(Ⅱ)设与轴交于点,过点且倾斜角为的直线与相交于两点,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com