科目: 来源: 题型:
【题目】已知椭圆C: (a>b>0)的一个顶点为A(2,0),离心率为.直线y=k(x-1)与椭圆C交于不同的两点M,N.
(1)求椭圆C的方程;
(2)当△AMN的面积为时,求k的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知曲线C的极坐标方程为,直线l的参数方程为(为参数,0≤α<π).
(1)求曲线C的直角坐标方程.并说明曲线C的形状;
(2)若直线l经过点M(1,0)且与曲线C交于A、B两点,求|AB|.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=(a-)x2-2ax+lnx,a∈R
(1)当a=1时,求f(x)在区间[1,e]上的最大值和最小值;
(2)求g(x)=f(x)+ax在x=1处的切线方程;
(3)若在区间(1,+∞)上,f(x)<0恒成立,求实数a的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】在数列{an}中,(c为常数,n∈N*),且a1,a2,a5成公比不为1的等比数列.
(1)求证:数列是等差数列;
(2)求c的值;
(3)设bn=anan+1,求数列{bn}的前n项和Sn.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知{an}为等差数列,前n项和为Sn(n∈N*),{bn}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4-2a1,S11=11b4.
(1)求{an}和{bn}的通项公式;
(2)求数列{a2nbn}的前n项和(n∈N*).
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面上给定相异两点A,B,设P点在同一平面上且满足,当且时,P点的轨迹是一个圆,这个轨迹最先由古希腊数学家阿波罗尼斯发现,故我们称这个圆为阿波罗尼斯圆,现有双曲线(,),A,B为双曲线的左、右顶点,C,D为双曲线的虚轴端点,动点P满足,面积的最大值为,面积的最小值为4,则双曲线的离心率为______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com