相关习题
 0  264333  264341  264347  264351  264357  264359  264363  264369  264371  264377  264383  264387  264389  264393  264399  264401  264407  264411  264413  264417  264419  264423  264425  264427  264428  264429  264431  264432  264433  264435  264437  264441  264443  264447  264449  264453  264459  264461  264467  264471  264473  264477  264483  264489  264491  264497  264501  264503  264509  264513  264519  264527  266669 

科目: 来源: 题型:

【题目】某基地蔬菜大棚采用水培、无土栽培方式种植各类菠菜.根据统计,该基地的西红种增加量y(百斤)与使用某种液体肥料x(千克)之间对应数据为如图所示的折线图.依据折线图及其提供的数据,是否可用线性回归模型拟合yx的关系?如果可以,请计算相关系数r并加以说明(精确到0.01),(若,则线性相关程度很高,可用线性回归模型拟合)

附:相关系数公式,参考数据:

查看答案和解析>>

科目: 来源: 题型:

【题目】某地级市共有中小学生,其中有学生在年享受了国家精准扶贫政策,在享受国家精准扶贫政策的学生中困难程度分为三个等次:一般困难、很困难、特别困难,且人数之比为,为进一步帮助这些学生,当地市政府设立专项教育基金,对这三个等次的困难学生每年每人分别补助元、元、元,经济学家调查发现,当地人均可支配年收入较上一年每增加,一般困难的学生中有会脱贫,脱贫后将不再享受精准扶贫政策,很困难的学生中有转为一般困难,特别困难的学生中有转为很困难.现统计了该地级市年到年共年的人均可支配年收入,对数据初步处理后得到了如图所示的散点图和表中统计量的值,其中年份时代表年,(万元)近似满足关系式,其中为常数.(年至年该市中学生人数大致保持不变)

其中

1)估计该市年人均可支配年收入;

2)求该市年的专项教育基金的财政预算大约为多少?

附:对于一组具有线性相关关系的数据,其回归直线方程的斜率和截距的最小二乘估计分别为

查看答案和解析>>

科目: 来源: 题型:

【题目】若函数y=f(x)(x∈R)满足f(1+x)=f(1-x)且x∈[-1,1]时,f(x)=1-x2,函数g(x)=则函数h(x)=f(x)-g(x)在区间[-5,5]内的零点的个数为

A. 7 B. 8 C. 9 D. 10

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数,在点处的切线方程为.

(Ⅰ)求的值;

(Ⅱ)已知,当时,恒成立,求实数的取值范围;

(Ⅲ)对于在中的任意一个常数,是否存在正数,使得,请说明理由。

查看答案和解析>>

科目: 来源: 题型:

【题目】为两个平面,则的充要条件是( )

A. 内有无数条直线与β平行B. 垂直于同一平面

C. 平行于同一条直线D. 内有两条相交直线与平行

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

(1)讨论的单调性;

(2)若有两个零点,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】中国海军,正在以不可阻挡的气魄向深蓝进军。在中国海军加快建设的大背景下,国产水面舰艇吨位不断增大、技术日益现代化,特别是国产航空母舰下水,航母需要大量高素质航母舰载机飞行员。为此中国海军在全国9省9所优质普通高中进行海航班建设试点培育航母舰载机飞行员。2017年4月我省首届海军航空实验班开始面向全省遴选学员,有10000名初中毕业生踊跃报名投身国防,经过文化考试、体格测试、政治考核、心理选拔等过程筛选,最终招收50名学员。培养学校在关注学员的文化素养同时注重学员的身体素质,要求每月至少参加一次野营拉练活动(下面简称“活动”)并记录成绩.10月某次活动中海航班学员成绩统计如图所示:

(Ⅰ)根据图表,试估算学员在活动中取得成绩的中位数(精确到);

(Ⅱ)根据成绩从两组学员中任意选出两人为一组,若选出成绩分差大于,则称该组为“帮扶组”,试求选出两人为“帮扶组”的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】十九世纪末:法国学者贝特朗在研究几何概型时提出了“贝特朗悖论”,即“在一个圆内任意选一条弦,这条弦的弦长长于这个圆的内接等边三角形边长的概率是多少?”贝特朗用“随机半径”“随机端点”“随机中点”三个合理的求解方法,但结果都不相同.该悖论的矛头直击概率概念本身,强烈地刺激了概率论基础的严格化.已知“随机端点”的方法如下:设为圆上一个定点,在圆周上随机取一点,连接,所得弦长大于圆的内接等边三角形边长的概率.则由“随机端点”求法所求得的概率为( )

A.B.C.D.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知aR,函数f(x)=(-x2ax)ex(xR).

(1)a=2时,求函数f(x)的单调区间;

(2)若函数f(x)(-1,1)上单调递增,求a的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知是椭圆与抛物线的一个公共点,且椭圆与抛物线具有一个相同的焦点

(1)求椭圆及抛物线的方程;

(2)设过且互相垂直的两动直线与椭圆交于两点,与抛物线交于两点,求四边形面积的最小值

查看答案和解析>>

同步练习册答案