相关习题
 0  264360  264368  264374  264378  264384  264386  264390  264396  264398  264404  264410  264414  264416  264420  264426  264428  264434  264438  264440  264444  264446  264450  264452  264454  264455  264456  264458  264459  264460  264462  264464  264468  264470  264474  264476  264480  264486  264488  264494  264498  264500  264504  264510  264516  264518  264524  264528  264530  264536  264540  264546  264554  266669 

科目: 来源: 题型:

【题目】若椭圆C1 和椭圆C2 的焦点相同且a1>a2.给出如下四个结论:

①椭圆C1和椭圆C2一定没有公共点;

a1a2<b1b2.

其中,所有正确结论的序号是(  )

A. ②③④ B. ①③④

C. ①②④ D. ①②③

查看答案和解析>>

科目: 来源: 题型:

【题目】下面几种推理中是演绎推理的为( )

A. 由金、银、铜、铁可导电,猜想:金属都可导电

B. 猜想数列的通项公式为

C. 半径为的圆的面积,则单位圆的面积

D. 由平面直角坐标系中圆的方程为,推测空间直角坐标系中球的方程为

查看答案和解析>>

科目: 来源: 题型:

【题目】某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,12月1日至12月5日的昼夜温差与实验室每天每100颗种子中的发芽数如下表所示:

日期

12月1日

12月2日

12月3日

12月4日

12月5日

温差x(℃)

10

11

13

12

8

发芽数y(颗)

23

25

30

26

16

该农科所确定的研究方案是:先从这5组数据中选取2组,用剩下的3组数据求回归方程,再用被选取的2组数据进行检验.

(1)求选取的2组数据恰好是不相邻的2组数据的概率.

(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求y关于x的线性回归方程.

(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?

查看答案和解析>>

科目: 来源: 题型:

【题目】n为正整数集合A=对于集合A中的任意元素

M=

n=3 MM的值

n=4BA的子集且满足对于B中的任意元素相同时M是奇数不同时M是偶数.求集合B中元素个数的最大值

给定不小于2nBA的子集且满足对于B中的任意两个不同的元素

M=0.写出一个集合B使其元素个数最多并说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】某高校进行社会实践,对岁的人群随机抽取 1000 人进行了一次是否开通“微博”的调查,开通“微博”的为“时尚族”,否则称为“非时尚族”.通过调查得到到各年龄段人数的频率分布直方图如图所示,其中在岁, 岁年龄段人数中,“时尚族”人数分别占本组人数的.

(1)求岁与岁年龄段“时尚族”的人数;

(2)从岁和岁年龄段的“时尚族”中,采用分层抽样法抽取6人参加网络时尚达人大赛,其中两人作为领队.求领队的两人年龄都在岁内的概率。

查看答案和解析>>

科目: 来源: 题型:

【题目】椭圆经过为坐标原点,线段的中点在圆上.

(1)求的方程;

(2)直线不过曲线的右焦点,与交于两点,且与圆相切,切点在第一象限, 的周长是否为定值?并说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】在三棱锥 中,底面 是边长为 2 的正三角形,顶点 在底面上的射影为的中心,若的中点,且直线与底面所成角的正切值为,则三棱锥外接球的表面积为( )

A. B. C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知为定义在实数集上的函数,把方程称为函数的特征方程,特征方程的两个实根),称为的特征根.

(1)讨论函数的奇偶性,并说明理由;

(2)已知为给定实数,求的表达式;

(3)把函数的最大值记作,最小值记作,研究函数的单调性,令,若恒成立,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知实数,对于定义在上的函数,有下述命题:

①“是奇函数”的充要条件是“函数的图像关于点对称”;

②“是偶函数”的充要条件是“函数的图像关于直线对称”;

③“的一个周期”的充要条件是“对任意的,都有”;

④“函数的图像关于轴对称”的充要条件是“

其中正确命题的序号是( )

A.①②B.②③C.①④D.③④

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数的定义域为,同时满足:对任意,总有,对定义域内的,若满足,恒有成立,则函数称为“函数”.

1)判断函数在区间上是否为“函数”,并说明理由;

2)当为“函数”时,求的最大值和最小值;

3)已知为“函数”:

证明:

证明:对一切,都有

查看答案和解析>>

同步练习册答案