科目: 来源: 题型:
【题目】已知直线.
(1)若直线不经过第四象限,求的取值范围;
(2)若直线交轴负半轴于,交轴正半轴于,求的面积的最小值并求此时直线的方程;
(3)已知点,若点到直线的距离为,求的最大值并求此时直线的方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】鲁班锁是中国传统的智力玩具,起源于古代汉族建筑中首创的榫卯结构,这种三维的拼插器具内部的凹凸部分(即榫卯结构)啮合,十分巧妙,外观看是严丝合缝的十字立方体,其上下、左右、前后完全对称,从外表上看,六根等长的正四棱柱分成三组,经榫卯起来,如图,若正四棱柱的高为,底面正方形的边长为,现将该鲁班锁放进一个球形容器内,则该球形容器的表面积的最小值为( )(容器壁的厚度忽略不计)
A.B.C.D.
查看答案和解析>>
科目: 来源: 题型:
【题目】下列说法正确的是( )
A.平行的两条直线的斜率一定存在且相等
B.平行的两条直线的倾斜角一定相等
C.垂直的两条直线的斜率之积为一1
D.只有斜率都存在且相等的两条直线才平行
查看答案和解析>>
科目: 来源: 题型:
【题目】设函数,.
(1)若函数f(x)在处有极值,求函数f(x)的最大值;
(2)是否存在实数b,使得关于x的不等式在上恒成立?若存在,求出b的取值范围;若不存在,说明理由;
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的方程为,过点的直线的参数方程为(为参数).
(Ⅰ)求直线的普通方程与曲线的直角坐标方程;
(Ⅱ)若直线与曲线交于、两点,求的值,并求定点到,两点的距离之积.
查看答案和解析>>
科目: 来源: 题型:
【题目】为更好地落实农民工工资保证金制度,南方某市劳动保障部门调查了年下半年该市名农民工(其中技术工、非技术工各名)的月工资,得到这名农民工月工资的中位数为百元(假设这名农民工的月工资均在(百元)内)且月工资收入在(百元)内的人数为,并根据调查结果画出如图所示的频率分布直方图:
(Ⅰ)求,的值;
(Ⅱ)已知这名农民工中月工资高于平均数的技术工有名,非技术工有名,则能否在犯错误的概率不超过的前提下认为是不是技术工与月工资是否高于平均数有关系?
参考公式及数据:,其中.
查看答案和解析>>
科目: 来源: 题型:
【题目】设函数,.
(1)若函数f(x)在处有极值,求函数f(x)的最大值;
(2)是否存在实数b,使得关于x的不等式在上恒成立?若存在,求出b的取值范围;若不存在,说明理由;
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的方程为,过点的直线的参数方程为(为参数).
(Ⅰ)求直线的普通方程与曲线的直角坐标方程;
(Ⅱ)若直线与曲线交于、两点,求的值,并求定点到,两点的距离之积.
查看答案和解析>>
科目: 来源: 题型:
【题目】为更好地落实农民工工资保证金制度,南方某市劳动保障部门调查了年下半年该市名农民工(其中技术工、非技术工各名)的月工资,得到这名农民工月工资的中位数为百元(假设这名农民工的月工资均在(百元)内)且月工资收入在(百元)内的人数为,并根据调查结果画出如图所示的频率分布直方图:
(Ⅰ)求,的值;
(Ⅱ)已知这名农民工中月工资高于平均数的技术工有名,非技术工有名,则能否在犯错误的概率不超过的前提下认为是不是技术工与月工资是否高于平均数有关系?
参考公式及数据:,其中.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com