科目: 来源: 题型:
【题目】如图,上海迪士尼乐园将一三角形地块的一角开辟为游客体验活动区,已知,、的长度均大于米,设,,且、总长度为米.
(1)当、为何值时,游客体验活动区的面积最大,并求最大面积?
(2)当、为何值时,线段最小,并求最小值?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.
(1) 证明:PB∥平面AEC
(2) 设二面角D-AE-C为60°,AP=1,AD=,求三棱锥E-ACD的体积
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系xOy中,曲线C的参数方程为,其中为参数,在以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,点P的极坐标为,直线l的极坐标方程为.
(1)求曲线C的普通方程与直线l的直角坐标方程;
(2)若Q是曲线C上的动点,M为线段PQ的中点,求点M到直线l的距离的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】作为交通重要参与者的行人,闯红灯通行频有发生,带来了较大的交通安全隐患.在某十字路口,交警部门从穿越该路口的行人中随机抽取了200人进行调查,得到不完整的列联表如图所示:
年龄低于30岁 | 年龄不低于30岁 | 合计 | |
闯红灯 | 60 | 80 | |
未闯红灯 | 80 | ||
合计 | 200 |
(1)将列联表补充完整;
(2)是否有99.9%的把握认为行人是否闯红灯与年龄有关.
参考公式及数据:,其中.
P() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目: 来源: 题型:
【题目】已知抛物线:,过其焦点作斜率为1的直线交抛物线于,两点,且线段的中点的纵坐标为4.
(1)求抛物线的标准方程;
(2)若不过原点且斜率存在的直线与抛物线相交于、两点,且.求证:直线过定点,并求出该定点的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】设是定义在R上的两个周期函数,的周期为4,的周期为2,且是奇函数.当时,,,其中k>0.若在区间(0,9]上,关于x的方程有8个不同的实数根,则k的取值范围是_____.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知为定义在实数集上的函数,把方程称为函数的特征方程,特征方程的两个实根、(),称为的特征根.
(1)讨论函数的奇偶性,并说明理由;
(2)已知为给定实数,求的表达式;
(3)把函数,的最大值记作,最小值记作,研究函数,的单调性,令,若恒成立,求的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知圆,椭圆的短半轴长等于圆的半径,且过右焦点的直线与圆相切于点.
(1)求椭圆的方程;
(2)若动直线与圆相切,且与相交于两点,求点到弦的垂直平分线距离的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】有甲、乙二人去看望高中数学张老师,期间他们做了一个游戏,张老师的生日是月日,张老师把告诉了甲,把告诉了乙,然后张老师列出来如下10个日期供选择: 2月5日,2月7日,2月9日,3月2日,3月7日,5月5日,5月8日,7月2日,7月6日,7月9日.看完日期后,甲说“我不知道,但你一定也不知道”,乙听了甲的话后,说“本来我不知道,但现在我知道了”,甲接着说,“哦,现在我也知道了”.请问张老师的生日是_______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com