科目: 来源: 题型:
【题目】无穷数列、、满足:,,,,记(表示3个实数、、中的最大数).
(1)若,,,求数列的前项和;
(2)若,,,当时,求满足条件的的取值范围;
(3)证明:对于任意正整数、、,必存在正整数,使得,,.
查看答案和解析>>
科目: 来源: 题型:
【题目】新高考3+3最大的特点就是取消文理科,除语文、数学、外语之外,从物理、化学、生物、政治、历史、地理这6科中自由选择三门科目作为选考科目.某研究机构为了了解学生对全理(选择物理、化学、生物)的选择是否与性别有关,觉得从某学校高一年级的650名学生中随机抽取男生,女生各25人进行模拟选科.经统计,选择全理的人数比不选全理的人数多10人.
(1)请完成下面的2×2列联表;
选择全理 | 不选择全理 | 合计 | |
男生 | 5 | ||
女生 | |||
合计 |
(2)估计有多大把握认为选择全理与性别有关,并说明理由;
(3)现从这50名学生中已经选取了男生3名,女生2名进行座谈,从中抽取2名代表作问卷调查,求至少抽到一名女生的概率.
附:,其中.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.076 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目: 来源: 题型:
【题目】把半椭圆()与圆弧()合成的曲线称作“曲圆”,其中为的右焦点,如图所示,、、、分别是“曲圆”与轴、轴的交点,已知,过点且倾斜角为的直线交“曲圆”于、两点(在轴的上方).
(1)求半椭圆和圆弧的方程;
(2)当点、分别在第一、第三象限时,求△的周长的取值范围;
(3)若射线绕点顺时针旋转交“曲圆”于点,请用表示、两点的坐标,并求△的面积的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】在直角坐标平面内,直线l过点P(1,1),且倾斜角α=.以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,已知圆C的极坐标方程为ρ=4sin θ.
(1)求圆C的直角坐标方程;
(2)设直线l与圆C交于A,B两点,求|PA|·|PB|的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】某企业为了检查甲、乙两条自动包装流水线的生产情况,随机在这两条流水线上各抽取件产品作为样本称出它们的质量(单位:毫克),质量值落在的产品为合格品,否则为不合格品.如表是甲流水线样本频数分布表,如图是乙流水线样本的频率分布直方图.
产品质量/毫克 | 频数 |
(Ⅰ)以样本的频率作为概率,试估计从甲流水线上任取件产品,求其中不合格品的件数的数学期望.
甲流水线 | 乙流水线 | 总计 | |
合格品 | |||
不合格品 | |||
总计 |
(Ⅱ)由以上统计数据完成下面列联表,能否在犯错误的概率不超过的前提下认为产品的包装合格与两条自动包装流水线的选择有关?
(Ⅲ)由乙流水线的频率分布直方图可以认为乙流水线生产的产品质量服从正态分布,求质量落在上的概率.
参考公式:
参考数据:
参考公式:
,其中.
查看答案和解析>>
科目: 来源: 题型:
【题目】国内某知名企业为适应发展的需要,计划加大对研发的投入,据了解,该企业原有100名技术人员,年人均投入万元,现把原有技术人员分成两部分:技术人员和研发人员,其中技术人员名(且),调整后研发人员的年人均投入增加%,技术人员的年人均投入调整为万元.
(1)要使这名研发人员的年总投入恰好与调整前100名技术人员的年总投入相同,求调整后的技术人员的人数;
(2)是否存在这样的实数,使得调整后,在技术人员的年人均投入不减少的情况下,研发人员的年总投入始终不低于技术人员的年总投入?若存在,求出的范围,若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系xOy中,曲线C的参数方程是(为参数),把曲线C的横坐标缩短为原来的,纵坐标缩短为原来的一半,得到曲线直线l的普通方程是,以坐标原点O为极点,x轴正半轴为极轴建立极坐标系.
(1)求直线l的极坐标方程和曲线的普通方程;
(2)记射线()与交于点A,与l交于点B,求的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】十七世纪,法国数学家费马提出猜想;“当整数时,关于、、的方程没有正整数解”,经历三百多年,1995年英国数学家安德鲁怀尔斯给出了证明,使它终成费马大定理,则下面命题正确的是( )
①对任意正整数,关于、、的方程都没有正整数解;
②当整数时,关于、、的方程至少存在一组正整数解;
③当正整数时,关于、、的方程至少存在一组正整数解;
④若关于、、的方程至少存在一组正整数解,则正整数;
A.①②/span>B.①③C.②④D.③④
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数,的在数集上都有定义,对于任意的,当时,或成立,则称是数集上的限制函数.
(1)求在上的限制函数的解析式;
(2)证明:如果在区间上恒为正值,则在上是增函数;[注:如果在区间上恒为负值,则在区间上是减函数,此结论无需证明,可以直接应用]
(3)利用(2)的结论,求函数在上的单调区间.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com