科目: 来源: 题型:
【题目】如图,在棱长为1的正方体中,分别为棱的中点.为面对角线上任一点,则下列说法正确的是( )
A.平面内存在直线与平行
B.平面截正方体所得截面面积为
C.直线和所成角可能为60°
D.直线和所成角可能为30°
查看答案和解析>>
科目: 来源: 题型:
【题目】2020年春节前后,一场突如其来的新冠肺炎疫情在全国蔓延.疫情就是命令,防控就是责任.在党中央的坚强领导和统一指挥下,全国人民众志成城、团结一心,掀起了一场坚决打赢疫情防控阻击战的人民战争.下图表展示了2月14日至29日全国新冠肺炎疫情变化情况,根据该折线图,下列结论正确的是( )
A.16天中每日新增确诊病例数量呈下降趋势且19日的降幅最大
B.16天中每日新增确诊病例的中位数小于新增疑似病例的中位数
C.16天中新增确诊、新增疑似、新增治愈病例的极差均大于2000
D.19日至29日每日新增治愈病例数量均大于新增确诊与新增疑似病例之和
查看答案和解析>>
科目: 来源: 题型:
【题目】下列四个命题中,真命题的个数是 ( )
①命题:“已知 ,“”是“”的充分不必要条件”;
②命题:“p且q为真”是“p或q为真”的必要不充分条件;
③命题:已知幂函数的图象经过点(2,),则f(4)的值等于;
④命题:若,则.
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目: 来源: 题型:
【题目】某学校高二年级举行了由全体学生参加的一分钟跳绳比赛,计分规则如下表:
每分钟跳绳个数 | |||||
得分 | 16 | 17 | 18 | 19 | 20 |
年级组为了解学生的体质,随机抽取了100名学生的跳绳个数作为一个样本,绘制了如下样本频率分布直方图.
(1)现从样本的100名学生跳绳个数中,任意抽取2人的跳绳个数,求两人得分之和小于35分的概率;(用最简分数表示)
(2)若该校高二年级共有2000名学生,所有学生的一分钟跳绳个数近似服从正态分布,其中,为样本平均数的估计值(同一组中数据以这组数据所在区间中点值作代表).利用所得的正态分布模型,解决以下问题:
(i)估计每分钟跳绳164个以上的人数(结果四舍五入到整数);
(ii)若在全年级所有学生中随机抽取3人,每分钟跳绳在179个以上的人数为,求随机变量的分布列和数学期望与方差.
附:若随机变量服从正态分布,则,,.
查看答案和解析>>
科目: 来源: 题型:
【题目】设点P在曲线y=x2上,从原点向A(2,4)移动,如果直线OP,曲线y=x2及直线x=2所围成的面积分别记为S1、S2.
(1)当S1=S2时,求点P的坐标;
(2)当S1+S2有最小值时,求点P的坐标和最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在直角中,,通过以直线为轴顺时针旋转得到().点为斜边上一点.点为线段上一点,且.
(1)证明:平面;
(2)当直线与平面所成的角取最大值时,求二面角的正弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】“初中数学靠练,高中数学靠悟”.总结反思自己已经成为数学学习中不可或缺的一部分,为了了解总结反思对学生数学成绩的影响,某校随机抽取200名学生,抽到不善于总结反思的学生概率是0.6.
(1)完成列联表(应适当写出计算过程);
(2)试运用独立性检验的思想方法分析是否有的把握认为学生的学习成绩与善于总结反思有关.
统计数据如下表所示:
不善于总结反思 | 善于总结反思 | 合计 | |
学习成绩优秀 | 40 | ||
学习成绩一般 | 20 | ||
合计 | 200 |
参考公式:其中
查看答案和解析>>
科目: 来源: 题型:
【题目】某大型单位举行了一次全体员工都参加的考试,从中随机抽取了20人的分数.以下茎叶图记录了他们的考试分数(以十位数字为茎,个位数字为叶):
若分数不低于95分,则称该员工的成绩为“优秀”.
(1)从这20人中任取3人,求恰有1人成绩“优秀”的概率;
(2)根据这20人的分数补全下方的频率分布表和频率分布直方图,并根据频率分布直方图解决下面的问题.
组别 | 分组 | 频数 | 频率 | |
1 | ||||
2 | ||||
3 | ||||
4 |
①估计所有员工的平均分数(同一组中的数据用该组区间的中点值作代表);
②若从所有员工中任选3人,记表示抽到的员工成绩为“优秀”的人数,求的分布列和数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com