科目: 来源: 题型:
【题目】水是生命之源,为了引导市民科学用水,我国加快阶梯水价推行,原则是“保基本、建机制、促节约”,其中“保基本”是指保证至少80%的居民用户用水价格不变,“建机制”是制定合理的阶梯用水价格某城市采用简单随机抽样的方法从郊区和城区分别抽取5户和20户居民的年人均用水量(单位:吨)进行调研,抽取数据的茎叶图如下:
(1)若在郊区的这5户居民中随机抽取2户,求“被抽取的2户年人均用水量的和超过60吨”的概率;
(2)若该城市郊区和城区的居民户数比为1:5,现将年人均用水量不超过30吨的用户定义为第一阶梯用户,只保证这一梯次的居民用户用水价格不变,试根据样本估计总体的思想分析此方案是否符合国家“保基本”政策.
查看答案和解析>>
科目: 来源: 题型:
【题目】某省新课改后某校为预测2020届高三毕业班的本科上线情况,从该校上一届高三(1)班到高三(5)班随机抽取50人,得到各班抽取的人数和其中本科上线人数,并将抽取数据制成下面的条形统计图.
(1)根据条形统计图,估计本届高三学生本科上线率.
(2)已知该省甲市2020届高考考生人数为4万,假设以(1)中的本科上线率作为甲市每个考生本科上线的概率.
(i)若从甲市随机抽取10名高三学生,求恰有8名学生达到本科线的概率(结果精确到0.01);
(ii)已知该省乙市2020届高考考生人数为3.6万,假设该市每个考生本科上线率均为,若2020届高考本科上线人数乙市的均值不低于甲市,求p的取值范围.
可能用到的参考数据:取,.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=ln (x+1)- -x,a∈R.
(1)当a>0时,求函数f(x)的单调区间;
(2)若存在x>0,使f(x)+x+1<- (a∈Z)成立,求a的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆过点,且离心率为.
(1)求椭圆的方程;
(2)已知圆方程为,过圆上任意一点作圆的切线,切线与椭圆交于,两点,为坐标原点,设为的中点,求的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆过点,且焦距为4
(1)求椭圆的标准方程:
(2)设为直线上一点,为椭圆上一点.以为直径的圆恒过坐标原点.
(i)求的取值范围
(ii)是否存在圆心在原点的定圆恒与直线相切?若存在,求出该定圆的方程;若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】推进垃圾分类处理,是落实绿色发展理念的必然选择,也是打赢污染防治攻坚战的重要环节.为了解居民对垃圾分类的了解程度,某社区居委会随机抽取1000名社区居民参与问卷测试,并将问卷得分绘制频率分布表如下:
得分 | |||||||
男性人数 | 40 | 90 | 120 | 130 | 110 | 60 | 30 |
女性人数 | 20 | 50 | 80 | 110 | 100 | 40 | 20 |
(1)从该社区随机抽取一名居民参与问卷测试,试估计其得分不低于60分的概率;
(2)将居民对垃圾分类的了解程度分为“比较了解“(得分不低于60分)和“不太了解”(得分低于60分)两类,完成列联表,并判断是否有95%的把握认为“居民对垃圾分类的了解程度”与“性别”有关?
不太了解 | 比较了解 | |
男性 | ||
女性 |
(3)从参与问卷测试且得分不低于80分的居民中,按照性别进行分层抽样,共抽取10人,连同名男性调查员一起组成3个环保宜传队.若从这中随机抽取3人作为队长,且男性队长人数占的期望不小于2.求的最小值.
附:
临界值表:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com