相关习题
 0  264480  264488  264494  264498  264504  264506  264510  264516  264518  264524  264530  264534  264536  264540  264546  264548  264554  264558  264560  264564  264566  264570  264572  264574  264575  264576  264578  264579  264580  264582  264584  264588  264590  264594  264596  264600  264606  264608  264614  264618  264620  264624  264630  264636  264638  264644  264648  264650  264656  264660  264666  264674  266669 

科目: 来源: 题型:

【题目】为了迎接2019年全国文明城市评比,某市文明办对市民进行了一次文明创建知识的网络问卷调查.每一位市民有且仅有一次参加机会,通过随机抽样,得到参加问卷调查的1000人的得分(满分:100分)数据,统计结果如下表所示:

组别

频数

25

150

200

250

225

100

50

(1)由频数分布表可以认为,此次问卷调查的得分服从正态分布近似为这1000人得分的平均值(同一组数据用该组区间的中点值作为代表),请利用正态分布的知识求

(2)在(1)的条件下,文明办为此次参加问卷调查的市民制定如下奖励方案:

(i)得分不低于的可以获赠2次随机话费,得分低于的可以获赠1次随机话费;

(ii)每次获赠的随机话费和对应的概率为:

获赠的随机话费(单位:元)

20

40

概率

现市民小王要参加此次问卷调查,记(单位:元)为该市民参加问卷调查获赠的话费,求的分布列及数学期望.

附:①

②若,则.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四棱锥中,底面是边长为的菱形,,且平面平面.

1)证明:

2)求二面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在三棱台中,分别为的中点.

)求证:平面

)若平面,

,求平面与平面所成角(锐角)的大小.

查看答案和解析>>

科目: 来源: 题型:

【题目】某市环保部门对该市市民进行了一次垃圾分类知识的网络问卷调查,每位市民仅有一次参加机会,通过随机抽样,得到参与问卷调查的100人的得分(满分:100分)数据,统计结果如表所示:

组别

2

3

5

15

18

12

0

5

10

10

7

13

(1)若规定问卷得分不低于70分的市民称为“环保关注者”,请完成答题卡中的列联表,并判断能否在犯错误概率不超过0.05的前提下,认为是否为“环保关注者”与性别有关?

(2)若问卷得分不低于80分的人称为“环保达人”.视频率为概率.

①在我市所有“环保达人”中,随机抽取3人,求抽取的3人中,既有男“环保达人”又有女“环保达人”的概率;

②为了鼓励市民关注环保,针对此次的调查制定了如下奖励方案:“环保达人”获得两次抽奖活动;其他参与的市民获得一次抽奖活动.每次抽奖获得红包的金额和对应的概率.如下表:

红包金额(单位:元)

10

20

概率

现某市民要参加此次问卷调查,记(单位:元)为该市民参加间卷调查获得的红包金额,求的分布列及数学期望.

附表及公式:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数

(1)求函数的极值;

(2)若函数上是单调递增函数,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】大气污染是我国目前最突出的环境问题之一,其中工厂废气是大气污染的重大污染源之一。工厂废气未经净化处理排放至空气中,除了对空气质量造成严重破坏,还会对人体的健康造成重大威胁。长期生活在污染的空气中,生活质量及身体健康将急剧下降。某工厂因为污染问题需改进技术,2019年初购进一台环保新机器投入生产,机器的成本价为36万元,第年该机器包括维修费和机器护理费用在内,每年另需投人费用万元,购进该机器后每年盈利20万元.

(1)问该机器投入生产第几年,工厂开始盈利(即总收入大于所有投人的费用)?

2)由于机器使用年限越大维修等费用越高,所以工厂决定当年平均利润最大时将该机器以5万元低价处理,问使用该机器几年后工厂年平均利润最大?此时工厂获得的总利润为多少?

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆在左、右焦点分别为,上顶点为点,若是面积为的等边三角形.

1)求椭圆的标准方程;

2)已知是椭圆上的两点,且,求使的面积最大时直线的方程(为坐标原点).

查看答案和解析>>

科目: 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

在直角坐标系中,曲线:为参数).在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,曲线.

(1)说明是哪一种曲线,并将的方程化为极坐标方程;

(2)若直线的方程为,设的交点为的交点为,若的面积为,求的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在棱长为的正方形中,分别为边上的中点,现将点为轴旋转至点的位置,使得为直二面角.

(1)证明:

(2)求异面直线所成角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】某市环保部门为了让全市居民认识到冬天烧煤取暖对空气数值的影响,进而唤醒全市人民的环保节能意识。对该市取暖季烧煤天数与空气数值不合格的天数进行统计分析,得出下表数据:

(天)

9

8

7

5

4

(天)

7

6

5

3

2

(1)以统计数据为依据,求出关于的线性回归方程

2)根据(1)求出的线性回归方程,预测该市烧煤取暖的天数为20时空气数值不合格的天数.

参考公式:

查看答案和解析>>

同步练习册答案