相关习题
 0  264496  264504  264510  264514  264520  264522  264526  264532  264534  264540  264546  264550  264552  264556  264562  264564  264570  264574  264576  264580  264582  264586  264588  264590  264591  264592  264594  264595  264596  264598  264600  264604  264606  264610  264612  264616  264622  264624  264630  264634  264636  264640  264646  264652  264654  264660  264664  264666  264672  264676  264682  264690  266669 

科目: 来源: 题型:

【题目】已知为坐标原点,点和点,动点满足:.

1)求动点的轨迹曲线的方程并说明是何种曲线;

2)若抛物线的焦点恰为曲线的顶点,过点的直线与抛物线交于两点,,求直线的方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系中,圆的圆心在直线上,且圆经过点和点.

1)求圆的标准方程;

2)求经过点且与圆恰有1个公共点的直线的方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】选修4-5:不等式选讲

已知f(x)=|x+a|(a∈R).

(1)若f(x)≥|2x﹣1|的解集为[0,2],求a的值;

(2)若对任意x∈R,不等式f(x)+|x﹣a|≥3a﹣2恒成立,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的两个焦点分别为,离心率为.设过点的直线与椭圆相交于不同两点 周长为.

)求椭圆C的标准方程;

(Ⅱ)已知点,证明:当直线变化时,总有TA与的斜率之和为定值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调区间;

(2)证明:.

查看答案和解析>>

科目: 来源: 题型:

【题目】O为坐标原点,动点M在椭圆C上,该椭圆的左顶点A到直线的距离为

求椭圆C的标准方程;

若线段MN平行于y轴,满足,动点P在直线上,满足证明:过点N且垂直于OP的直线过椭圆C的右焦点F

查看答案和解析>>

科目: 来源: 题型:

【题目】下列说法正确的是( ).

A. ,“”是“”的必要不充分条件

B. 为真命题”是“为真命题” 的必要不充分条件

C. 命题“,使得”的否定是:“

D. 命题:“”,则是真命题

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数f(x)=x3-2x2+x+a,g(x)=-2x+,若对任意的x1∈[-1,2],存在x2∈[2,4],使得f(x1)=g(x2),则实数a的取值范围是________

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四棱锥中,平面平面.

1)证明:

2)设点M在线段PC上,且,若的面积为,求四棱锥的体积.

查看答案和解析>>

科目: 来源: 题型:

【题目】某城市的公交公司为了方便市民出行,科学规划车辆投放,在一个人员密集流动地段增设一个起点站,为了研究车辆发车间隔时间与乘客等候人数之间的关系,经过调查得到如下数据:

间隔时间(分钟)

10

11

12

13

14

15

等候人数(人)

23

25

26

29

28

31

调查小组先从这6组数据中选取4组数据求线性回归方程,再用剩下的2组数据进行检验.检验方法如下:先用求得的线性回归方程计算间隔时间对应的等候人数,再求与实际等候人数的差,若差值的绝对值不超过1,则称所求方程是恰当回归方程”.

1)若选取的是后面4组数据,求关于的线性回归方程

2)判断(1)中的方程是否是恰当回归方程

3)为了使等候的乘客不超过35人,试用(1)中方程估计间隔时间最多可以设置为多少(精确到整数)分钟?

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为: .

查看答案和解析>>

同步练习册答案