科目: 来源: 题型:
【题目】已知函数,其中实数a为常数.
(I)当a=-l时,确定的单调区间:
(II)若f(x)在区间(e为自然对数的底数)上的最大值为-3,求a的值;
(Ⅲ)当a=-1时,证明.
查看答案和解析>>
科目: 来源: 题型:
【题目】计算机考试分理论考试与实际操作两部分,每部分考试成绩只记“合格”与“不合格”,两部分考试都“合格”者,则计算机考试“合格”,并颁发合格证书甲、乙、丙三人在理论考试中“合格”的概率依次为,,,在实际操作考试中“合格”的概率依次为,,,所有考试是否合格相互之间没有影响.
(1)假设甲、乙、丙三人同时进行理论与实际操作两项考试,谁获得合格证书的可能性最大?
(2)这三人进行理论与实际操作两项考试后,求恰有两人获得合格证书的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】如今我们的互联网生活日益丰富,除了可以很方便地网购,网络外卖也开始成为不少人日常生活中重要的一部分,其中大学生更是频频使用网络外卖服务.市教育主管部门为掌握网络外卖在该市各大学的发展情况,在某月从该市大学生中随机调查了人,并将这人在本月的网络外卖的消费金额制成如下频数分布表(已知每人每月网络外卖消费金额不超过元):
消费金额(单位:百元) | ||||||
频数 |
由频数分布表可以认为,该市大学生网络外卖消费金额(单位:元)近似地服从正态分布,其中近似为样本平均数(每组数据取区间的中点值,).现从该市任取名大学生,记其中网络外卖消费金额恰在元至元之间的人数为,求的数学期望;
市某大学后勤部为鼓励大学生在食堂消费,特地给参与本次问卷调查的大学生每人发放价值元的饭卡,并推出一档“勇闯关,送大奖”的活动.规则是:在某张方格图上标有第格、第格、第格、…、第格共个方格.棋子开始在第格,然后掷一枚均匀的硬币(已知硬币出现正、反面的概率都是,其中),若掷出正面,将棋子向前移动一格(从到),若掷出反面,则将棋子向前移动两格(从到).重复多次,若这枚棋子最终停在第格,则认为“闯关成功”,并赠送元充值饭卡;若这枚棋子最终停在第格,则认为“闯关失败”,不再获得其他奖励,活动结束.
①设棋子移到第格的概率为,求证:当时,是等比数列;
②若某大学生参与这档“闯关游戏”,试比较该大学生闯关成功与闯关失败的概率大小,并说明理由.
参考数据:若随机变量服从正态分布,则,,.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,动点在抛物线上运动,点在轴上的射影为,动点满足.
求动点的轨迹的方程;
过点作互相垂直的直线,,分别交曲线于点,和,,记,的面积分别为,,问:是否为定值?若为定值,求出该定值;若不为定值,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】若直线与曲线满足以下两个条件:点在曲线上,直线方程为;曲线在点附近位于直线的两侧,则称直线在点处“切过”曲线.下列选项正确的是( )
A.直线在点处“切过”曲线
B.直线在点处“切过”曲线
C.直线在点处“切过”曲线
D.直线在点处“切过”曲线
查看答案和解析>>
科目: 来源: 题型:
【题目】中央电视台为了解一档诗歌节目的收视情况,抽查东西两部各个城市,得到观看该节目的人数(单位:千人)如茎叶图所示:其中一个数字被污损.
(1)求东部各城市观看该节目观众平均人数超过西部各城市观看该节目观众平均人数的概率;
(2)现从观看该节目的观众中随机统计了位观众的周均学习诗歌知识的时间(单位:小时)与年龄(单位:岁),并制作了对照表(如表所示):由表中数据,求线性回归方程,并预测年龄在岁的观众周均学习诗歌知识的时间.
年龄(岁) | ||||
周均学习成语知识时间(小时) |
(参考数据:,回归直线方程参考公式:)
查看答案和解析>>
科目: 来源: 题型:
【题目】某快递公司有两种发放薪水的方案:
方案一:底薪1800元,设每月送快递单,提成(单位:元)为
方案二:底薪2000元,设每月送快递单,提成(单位:元)为
以下该公司某职工小甲在2019年9月份(30天)送快递的数据,
日送快递单数 | 11 | 13 | 14 | 15 | 16 | 18 |
天数 | 4 | 5 | 12 | 3 | 5 | 1 |
(1)从小甲日送快递单数大于15的六天中抽取两天,求这两天他送的快递单数恰好都为16单的概率.
(2)请你利用所学的统计学知识为小甲9月份选择合适的发放薪水的方案,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com