科目: 来源: 题型:
【题目】为了了解手机品牌的选择是否和年龄的大小有关,随机抽取部分华为手机使用者和苹果机使用者进行统计,统计结果如下表:
年龄 手机品牌 | 华为 | 苹果 | 合计 |
30岁以上 | 40 | 20 | 60 |
30岁以下(含30岁) | 15 | 25 | 40 |
合计 | 55 | 45 | 100 |
附:
P() | 0.10 | 0.05 | 0.010 | 0.001 |
2.706 | 3.841 | 6.635 | 10.828 |
根据表格计算得的观测值,据此判断下列结论正确的是( )
A.没有任何把握认为“手机品牌的选择与年龄大小有关”
B.可以在犯错误的概率不超过0.001的前提下认为“手机品牌的选择与年龄大小有关”
C.可以在犯错误的概率不超过0.01的前提下认为“手机品牌的选择与年龄大小有关”
D.可以在犯错误的概率不超过0.01的前提下认为“手机品牌的选择与年龄大小无关”
查看答案和解析>>
科目: 来源: 题型:
【题目】已知一组样本点,其中.根据最小二乘法求得的回归方程是,则下列说法正确的是( )
A. 若所有样本点都在上,则变量间的相关系数为1
B. 至少有一个样本点落在回归直线上
C. 对所有的预报变量,的值一定与有误差
D. 若斜率,则变量与正相关
查看答案和解析>>
科目: 来源: 题型:
【题目】祖冲之是中国南北朝时期的数学家和天文学家,他在数学方面的突出贡献是将圆周率的精确度计算到小数点后第位,也就是和之间,这一成就比欧洲早了多年,我校“爱数学”社团的同学,在祖冲之研究圆周率的方法启发下,自制了一套计算圆周率的数学实验模型.该模型三视图如图所示,模型内置一个与其各个面都相切的球,该模型及其内球在同一方向有开口装置.实验的时候,同学们随机往模型中投掷大小相等,形状相同的玻璃球,通过计算落在球内的玻璃球数量,来估算圆周率的近似值.已知某次实验中,某同学一次投掷了个玻璃球,请你根据祖冲之的圆周率精确度(取小数点后三位)估算落在球内的玻璃球数量( )
A.B.C.D.
查看答案和解析>>
科目: 来源: 题型:
【题目】某市垃圾处理厂的垃圾年处理量(单位:千万吨)与资金投入量x(单位:千万元)有如下统计数据:
2012年 | 2013年 | 2014年 | 2015年 | 2016年 | |
资金投入量x(千万元) | 1.5 | 1.4 | 1.9 | 1.6 | 2.1 |
垃圾处理量y(千万吨) | 7.4 | 7.0 | 9.2 | 7.9 | 10.0 |
(1)若从统计的5年中任取2年,求这2年的垃圾处理量至少有一年不低于8.0(千万吨)的概率;
(2)由表中数据求得线性回归方程为,该垃圾处理厂计划2017年的垃圾处理量不低于9.0千万吨,现由垃圾处理厂决策部门获悉2017年的资金投入量约为1.8千万元,请你预测2017年能否完成垃圾处理任务,若不能,缺口约为多少千万吨?
查看答案和解析>>
科目: 来源: 题型:
【题目】有三张形状、大小、质地完全一致的卡片,在每张卡片上写上0,1,2,现从中任意抽取一张,将其上数字记作x,然后放回,再抽取一张,其上数字记作y,令.求:
(1)所取各值的分布列;
(2)随机变量的数学期望与方差.
查看答案和解析>>
科目: 来源: 题型:
【题目】
某商场经销某商品,根据以往资料统计,顾客采用的付款期数的分布列为
商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元.表示经销一件该商品的利润.
(Ⅰ)求事件A:“购买该商品的3位顾客中,至少有1位采用1期付款”的概率
P(A);
(Ⅱ)求的分布列及期望
查看答案和解析>>
科目: 来源: 题型:
【题目】某校从学生会宣传部6名成员(其中男生4人,女生2人)中,任选3人参加某省举办的“我看中国改革开放三十年”演讲比赛活动.
(1)设所选3人中女生人数为ξ,求ξ的分布列;
(2)求男生甲或女生乙被选中的概率;
(3)设“男生甲被选中”为事件A,“女生乙被选中”为事件B,求P(B)和P(B|A).
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,已知曲线(为参数),以坐标原点为极点,轴的非负半轴为极轴建立极坐标系,直线的极坐标方程为:.
(1)求直线和曲线的直角坐标方程;
(2),直线和曲线交于、两点,求的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】近几年市加大雾霾治理的投入,空气质量与前几年相比有了很大改善,并于年市入选中国空气优良城市.已知该市设有个监测站用于监测空气质量指数(),其中在轻度污染区、中度污染区、重度污染区分别设有、、个监测站,并以个监测站测得的的平均值为依据播报该市的空气质量.
(1)若某日播报的为,已知轻度污染区平均值为,中度污染区平均值为,求重度污染区平均值;
(2)如图是年月份天的的频率分布直方图,月份仅有天在内.
①某校参照官方公布的,如果周日小于就组织学生参加户外活动,以统计数据中的频率为概率,求该校学生周日能参加户外活动的概率;
②环卫部门从月份不小于的数据中抽取两天的数据进行研究,求抽取的这两天中值在的天数的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com