相关习题
 0  264545  264553  264559  264563  264569  264571  264575  264581  264583  264589  264595  264599  264601  264605  264611  264613  264619  264623  264625  264629  264631  264635  264637  264639  264640  264641  264643  264644  264645  264647  264649  264653  264655  264659  264661  264665  264671  264673  264679  264683  264685  264689  264695  264701  264703  264709  264713  264715  264721  264725  264731  264739  266669 

科目: 来源: 题型:

【题目】下列命题中为真命题的是(  )

A.命题“若,则”的否命题

B.命题“若xy,则x|y|”的逆命题

C.命题“若x1,则”的否命题

D.命题“已知,若,则ab”的逆命题、否命题、逆否命题均为真命题

查看答案和解析>>

科目: 来源: 题型:

【题目】某鲜花批发店每天早晨以每支2元的价格从鲜切花生产基地购入某种玫瑰,经过保鲜加工后全部装箱(每箱500支,平均每支玫瑰的保鲜加工成本为1元),然后以每箱2000元的价格整箱出售.由于鲜花的保鲜特点,制定了如下促销策略:若每天下午3点以前所购进的玫瑰没有售完,则对未售出的玫瑰以每箱1200元的价格降价处理.根据经验,降价后能够把剩余玫瑰全部处理完毕,且当天不再购进该种玫瑰.因库房限制每天最多加工6箱.

1)若某天此鲜花批发店购入并加工了6箱该种玫瑰,在下午3点以前售出4箱,且6箱该种玫瑰被6位不同的顾客购买.现从这6位顾客中随机选取2人赠送优惠卡,求恰好一位是以2000元价格购买的顾客且另一位是以1200元价格购买的顾客的概率:

2)此鲜花批发店统计了100天该种玫瑰在每天下午3点以前的销售量t(单位:箱),统计结果如下表所示(视频率为概率):

t/

4

5

6

频数

30

x

s

①估计接下来的一个月(30天)该种玫瑰每天下午3点前的销售量不少于5箱的天数并说明理由;

②记,若此批发店每天购进的该种玫瑰箱数为5箱时所获得的平均利润最大,求实数b的最小值(不考虑其他成本,的整数部分,例如:).

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数

1)若函数在区间内是单调递增函数,求实数a的取值范围;

2)若函数有两个极值点,且,求证:.(注:为自然对数的底数)

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

(1)讨论上的零点个数;

(2)当时,若存在,使,求实数的取值范围.(为自然对数的底数,其值为2.71828……)

查看答案和解析>>

科目: 来源: 题型:

【题目】国家文明城市评审委员会对甲、乙两个城市是否能入围国家文明城市进行走访调查,派出10人的调查组,先后到甲、乙两个城市的街道、社区进行问卷调查,然后打分(满分100分),他们给出甲、乙两个城市分数的茎叶图如图所示:

1)请你用统计学的知识分析哪个城市更应该入围国家文明城市,并说明理由;

2)从甲、乙两个城市的打分中各抽取2个,在已知有大于80分的条件下,求抽到乙城市的分数都小于80分的概率.

(参考数据:

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

(1)求的单调区间;

(2)若上成立,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数,则关于x的方程有以下结论,其中正确的结论为(

A.时,方程恒有实根

B.时,方程内有两个不等实根

C.时,方程内最多有9个不等实根

D.若方程内的实根的个数为偶数,则所有实根之和为

查看答案和解析>>

科目: 来源: 题型:

【题目】杨辉三角,是二项式系数在三角形中的一种几何排列.中国南宋数学家杨辉1261年所著的《详解九章算法》一书中出现了杨辉三角.在欧洲,帕斯卡在1654年也发现了这一规律,所以这个表又叫做帕斯卡三角形.杨辉三角是中国古代数学的杰出研究成果之一,它把二项式系数图形化,把组合数内在的一些代数性质直观地从图形中体现出来,是一种离散型的数与形的结合.

0

1

1

1 1

2

1 2 1

3

1 3 3 1

4

1 4 6 4 1

5

1 5 10 10 5 1

6

1 6 15 20 15 6 1

1)记杨辉三角的前n行所有数之和为,求的通项公式;

2)在杨辉三角中是否存在某一行,且该行中三个相邻的数之比为?若存在,试求出是第几行;若不存在,请说明理由;

3)已知nr为正整数,且.求证:任何四个相邻的组合数不能构成等差数列.

查看答案和解析>>

科目: 来源: 题型:

【题目】绿色已成为当今世界主题,绿色动力已成为时代的驱动力,绿色能源是未来新能源行业的主导.某汽车公司顺应时代潮流,最新研发了一款新能源汽车,并在出厂前对100辆汽车进行了单次最大续航里程(理论上是指新能源汽车所装载的燃料或电池所能够提供给车行驶的最远里程)的测试.现对测试数据进行分析,得到如图所示的频率分布直方图.

1)估计这100辆汽车的单次最大续航里程的平均值(同一组中的数据用该组区间的中点值代表);

2)根据大量的汽车测试数据,可以认为这款汽车的单次最大续航里程近似地服从正态分布,经计算第(1)问中样本标准差的近似值为50.用样本平均数作为的近似值,用样本标准差作为的估计值;

(ⅰ)现从该汽车公司最新研发的新能源汽车中任取一辆汽车,求它的单次最大续航里程恰好在200千米到350千米之间的概率;

(ⅱ)从该汽车公司最新研发的新能源汽车中随机抽取10辆,设这10辆汽车中单次最大续航里程恰好在200千米到350千米之间的数量为,求

3)某汽车销售公司为推广此款新能源汽车,现面向意向客户推出“玩游戏,送大奖”活动,客户可根据抛掷硬币的结果,操控微型遥控车在方格图上行进,若遥控车最终停在“胜利大本营”,则可获得购车优惠券.已知硬币出现正、反面的概率都是,方格图上标有第0格、第1格、第2格、…、第50格.遥控车开始在第0格,客户每掷一次硬币,遥控车向前移动一次,若掷出正面,遥控车向前移动一格(从),若掷出反面,遥控车向前移动两格(从),直到遥控车移到第49格(胜利大本营)或第50格(失败大本营)时,游戏结束.设遥控车移到第格的概率为,其中,试说明是等比数列,并解释此方案能否成功吸引顾客购买该款新能源汽车.

参考数据:若随机变量服从正态分布,则.

查看答案和解析>>

科目: 来源: 题型:

【题目】将函数的图象上所有点的横坐标缩短到原来的倍(纵坐标不变),再将所得的图象向左平移个单位长度后得到函数的图象.

1)写出函数的解析式;

2)若对任意 恒成立,求实数的取值范围;

3)求实数和正整数,使得上恰有个零点.

查看答案和解析>>

同步练习册答案