科目: 来源: 题型:
【题目】设函数.
(1)若,求函数在处的切线方程;
(2)若函数在和处有两个极值点,其中,.
(i)求实数的取值范围;
(ii)若(e为自然对数的底数),求的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆的上顶点到左焦点的距离为.直线与椭圆交于不同两点、(、都在轴上方),且.
(1)求椭圆的方程;
(2)当为椭圆与轴正半轴的交点时,求直线方程;
(3)对于动直线,是否存在一个定点,无论如何变化,直线总经过此定点?若存在,求出该定点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=4,AD=CD=2.将△ADC沿AC折起,使平面ADC⊥平面ABC,得到几何体D﹣ABC,如图2所示.
(Ⅰ)求证:BC⊥平面ACD;
(Ⅱ)求几何体D﹣ABC的体积.
查看答案和解析>>
科目: 来源: 题型:
【题目】(本小题满分12分)如图所示,是一个矩形花坛,其中米,米.现将矩形花坛扩建成一个更大的矩形花坛,要求:在上,在上,对角线过点,且矩形的面积小于150平方米.
(1)设长为米,矩形的面积为平方米,试用解析式将表示成的函数,并确定函数的定义域;
(2)当的长度是多少时,矩形的面积最小?并求最小面积.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,是南北方向的一条公路,是北偏东方向的一条公路,某风景区的一段边界为曲线.为方便游客光,拟过曲线上的某点分别修建与公路,垂直的两条道路,,且,的造价分别为5万元百米,40万元百米,建立如图所示的直角坐标系,则曲线符合函数模型,设,修建两条道路,的总造价为万元,题中所涉及的长度单位均为百米.
(1)求解析式;
(2)当为多少时,总造价最低?并求出最低造价.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆的左、右焦点分别为,且椭圆上存在一点,满足.
(1)求椭圆的标准方程;
(2)过椭圆右焦点的直线与椭圆交于不同的两点,求的内切圆的半径的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,,是离心率为的椭圆的左、右焦点,直线,将线段,分成两段,其长度之比为,设是上的两个动点,线段的中垂线与椭圆交于两点,线段的中点在直线上.
(1)求椭圆的方程;
(2)求的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,直三棱柱中,,,为的中点.
(I)若为上的一点,且与直线垂直,求的值;
(Ⅱ)在(I)的条件下,设异面直线与所成的角为45°,求直线与平面成角的正弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】(2017·江苏高考)如图,在三棱锥ABCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.
求证:(1)EF∥平面ABC;
(2)AD⊥AC.
查看答案和解析>>
科目: 来源: 题型:
【题目】正三棱柱(底面是正三角形,侧棱垂直底面)的各条棱长均相等,为的中点,、分别是、上的动点(含端点),且满足.当、运动时,下列结论中正确的个数是( )
①平面平面;
②三棱锥的体积为定值;
③可能为直角三角形;
④平面与平面所成的锐二面角范围为.
A.1B.2C.3D.4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com