相关习题
 0  264576  264584  264590  264594  264600  264602  264606  264612  264614  264620  264626  264630  264632  264636  264642  264644  264650  264654  264656  264660  264662  264666  264668  264670  264671  264672  264674  264675  264676  264678  264680  264684  264686  264690  264692  264696  264702  264704  264710  264714  264716  264720  264726  264732  264734  264740  264744  264746  264752  264756  264762  264770  266669 

科目: 来源: 题型:

【题目】如图,圆形纸片的圆心为,半径为,该纸片上的等边三角形的中心为.为圆上的点,分别是以为底边的等腰三角形.沿虚线剪开后,分别以为折痕折起,使得重合,得到三棱锥.当所得三棱锥体积(单位:)最大时,的边长为_________.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知平面直角坐标系中,过点的直线的参数方程为t为参数),y轴交于A,以该直角坐标系的原点O为极点,轴的非负半轴为极轴建立极坐标系.曲线C的极坐标方程,直线与曲线C交于MN两点.

1)求曲线C的直角坐标方程和点A的一个极坐标;

2)若,求实数m的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】国庆70周年阅兵式上的女兵们是一道靓丽的风景线,每一名女兵都是经过层层筛选才最终入选受阅方队,筛选标准非常严格,例如要求女兵身高(单位:cm)在区间.现从全体受阅女兵中随机抽取200人,对她们的身高进行统计,将所得数据分为五组,得到如图所示的频率分布直方图,其中第三组的频数为75,最后三组的频率之和为0.7.

1)请根据频率分布直方图估计样本的平均数和方差(同一组中的数据用该组区间的中点值代表);

2)根据样本数据,可认为受阅女兵的身高Xcm)近似服从正态分布,其中近似为样本平均数近似为样本方差.

i)求

ii)若从全体受阅女兵中随机抽取10人,求这10人中至少有1人的身高在174.28cm以上的概率.

参考数据:若,则.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数

1)若,求函数的最大值;

2)令,讨论函数的单调区间;

3)若,正实数满足,证明:

查看答案和解析>>

科目: 来源: 题型:

【题目】某校为缓解高三学生的高考压力,经常举行一些心理素质综合能力训练活动,经过一段时间的训练后从该年级800名学生中随机抽取100名学生进行测试,并将其成绩分为五个等级,统计数据如图所示(视频率为概率),根据图中抽样调查的数据,回答下列问题:

(1)试估算该校高三年级学生获得成绩为的人数;

(2)若等级分别对应100分、90分、80分、70分、60分,学校要求当学生获得的等级成绩的平均分大于90分时,高三学生的考前心理稳定,整体过关,请问该校高三年级目前学生的考前心理稳定情况是否整体过关?

(3)以每个学生的心理都培养成为健康状态为目标,学校决定对成绩等级为的16名学生(其中男生4人,女生12人)进行特殊的一对一帮扶培训,从按分层抽样抽取的4人中任意抽取2名,求恰好抽到1名男生的概率..

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数R上的奇函数,当时,,则函数上的所有零点之和为(

A.0B.4C.8D.16

查看答案和解析>>

科目: 来源: 题型:

【题目】20183月份,上海出台了《关于建立完善本市生活垃圾全程分类体系的实施方案》,4月份又出台了《上海市生活垃圾全程分类体系建设行动计划(2018-2020年)》,提出到2020年底,基本实现单位生活垃圾强制分类全覆盖,居民区普遍推行生活垃圾分类制度.为加强社区居民的垃圾分类意识,推动社区垃圾分类正确投放,某社区在健身广场举办了垃圾分类,从我做起生活垃圾分类大型宣传活动,号召社区居民用实际行动为建设绿色家园贡献一份力量,为此需要征集一部分垃圾分类志愿者.

1)为调查社区居民喜欢担任垃圾分类志愿者是否与性别有关,现随机选取了一部分社区居民进行调查,其中被调查的男性居民和女性居民人数相同,男性居民中不喜欢担任垃圾分类志愿者占男性居民的,女性居民中不喜欢担任垃圾分类志愿者占女性居民的,若研究得到在犯错误概率不超过0.010的前提下,认为居民喜欢担任垃圾分类志愿者与性别有关,则被调查的女性居民至少多少人?

0.100

0.050

0.010

0.005

0.001

2.706

3.841

6.635

7.879

10.828

2)某垃圾站的日垃圾分拣量(千克)与垃圾分类志愿者人数(人)满足回归直线方程,数据统计如下:

志愿者人数(人)

2

3

4

5

6

日垃圾分拣量(千克)

25

30

40

45

已知,根据所给数据求和回归直线方程,附:

3)用(2)中所求的线性回归方程得到与对应的日垃圾分拣量的估计值.当分拣数据与估计值满足时,则将分拣数据称为一个正常数据.现从5个分拣数据中任取3个,记表示取得正常数据的个数,求的分布列和数学期望.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数

1)当时,求不等式的解集;

2)若函数的值域为A,且,求a的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系xOy中,直线l的参数方程为t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为.

1)求直线l的普通方程和圆C的直角坐标方程;

2)直线l与圆C交于AB两点,点P(2,1),求|PA||PB|的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】甲、乙两名射手在一次射击中得分为两个相互独立的随机变量ξη,已知甲、乙两名射手在每次射击中射中的环数大于6且甲射中10,9,8,7环的概率分别为0.5,3aa,0.1,乙射中10,9,8环的概率分别为0.3,0.3,0.2.

(1)ξη的分布列;

(2)ξη的数学期望与方差并以此比较甲、乙的射击技术.

查看答案和解析>>

同步练习册答案