相关习题
 0  264593  264601  264607  264611  264617  264619  264623  264629  264631  264637  264643  264647  264649  264653  264659  264661  264667  264671  264673  264677  264679  264683  264685  264687  264688  264689  264691  264692  264693  264695  264697  264701  264703  264707  264709  264713  264719  264721  264727  264731  264733  264737  264743  264749  264751  264757  264761  264763  264769  264773  264779  264787  266669 

科目: 来源: 题型:

【题目】某研究机构为了了解大学生对冰壶运动的兴趣,随机从某校学生中抽取了100人进行调查,经统计男生与女生的人数比为,男生中有20人表示对冰壶运动有兴趣,女生中有15人对冰壶运动没有兴趣.

1)完成列联表,并判断能否有把握认为“对冰壶运动是否有兴趣与性别有关”?

有兴趣

没有兴趣

合计

20

15

合计

100

2)用分层抽样的方法从样本中对冰壶运动有兴趣的学生中抽取6人,求抽取的男生和女生分别为多少人?若从这6人中选取两人作为冰壶运动的宣传员,求选取的2人中恰好有1位男生和1位女生的概率.

附:参考公式1.);2.,其中

0.150

0.100

0.050

0.025

0.010

2.072

2.076

3.841

5.024

6.635

查看答案和解析>>

科目: 来源: 题型:

【题目】中,角所对的边分别为,当角取最大值时,的周长为,则__________

查看答案和解析>>

科目: 来源: 题型:

【题目】为了研究一种昆虫的产卵数和温度是否有关,现收集了7组观测数据列于下表中,并作出了如图的散点图.

温度/

20

22

24

26

28

30

32

产卵数/

6

10

22

26

64

118

310

26

794

358

112

116

2340

3572

其中

1)根据散点图判断,哪一个更适宜作为该昆虫的产卵数与温度的回归方程类型?(给出判断即可,不必说明理由).

2)根据表中数据,建立关于的回归方程;(保留两位有效数字)

3)根据关于的回归方程,估计温度为33℃时的产卵数.

(参考数据:

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为

查看答案和解析>>

科目: 来源: 题型:

【题目】已知常数,函数.

(1)讨论在区间上的单调性;

(2)存在两个极值点,,的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】国际奥委会将于2017915日在秘鲁利马召开130次会议决定2024年第33届奥运会举办地,目前德国汉堡,美国波士顿等申办城市因市民担心赛事费用超支而相继退出,某机构为调查我国公民对申办奥运会的态度,选了某小区的100位居民调查结果统计如下:

支持

不支持

合计

年龄不大于50

80

年龄大于50

10

合计

70

100

1)根据已知数据,把表格数据填写完整;

2)能否在犯错误的概率不超过5%的前提下认为不同年龄与支持申办奥运有关?

3)已知在被调查的年龄大于50岁的支持者中有6名女性,其中2名是女教师.现从这6名女性中随机抽取2名,求恰有1名女教师的概率.

附:

0.100

0.050

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

科目: 来源: 题型:

【题目】2019年春节期间,某超市准备举办一次有奖促销活动,若顾客一次消费达到400元则可参加一次抽奖活动,超市设计了两种抽奖方案.

方案一:一个不透明的盒子中装有30个质地均匀且大小相同的小球,其中10个红球,20个白球,搅拌均匀后,顾客从中随机抽取一个球,若抽到红球则顾客获得60元的返金券,若抽到白球则获得20元的返金券,且顾客有放回地抽取3次.

方案二:一个不透明的盒子中装有30个质地均匀且大小相同的小球,其中10个红球,20个白球,搅拌均匀后,顾客从中随机抽取一个球,若抽到红球则顾客获得80元的返金券,若抽到白球则未中奖,且顾客有放回地抽取3次.

(1)现有两位顾客均获得抽奖机会,且都按方案一抽奖,试求这两位顾客均获得180元返金券的概率;

(2)若某顾客获得抽奖机会.

①试分别计算他选择两种抽奖方案最终获得返金券的数学期望;

②为了吸引顾客消费,让顾客获得更多金额的返金券,该超市应选择哪一种抽奖方案进行促销活动?

查看答案和解析>>

科目: 来源: 题型:

【题目】某商场举行促销活动,有两个摸奖箱,箱内有一个“”号球,两个“”号球,三个“”号球、四个无号球,箱内有五个“”号球,五个“”号球,每次摸奖后放回,每位顾客消费额满元有一次箱内摸奖机会,消费额满元有一次箱内摸奖机会,摸得有数字的球则中奖,“”号球奖元,“”号球奖元,“”号球奖元,摸得无号球则没有奖金。

(1)经统计,顾客消费额服从正态分布,某天有位顾客,请估计消费额(单位:元)在区间内并中奖的人数.(结果四舍五入取整数)

附:若,则.

(2)某三位顾客各有一次箱内摸奖机会,求其中中奖人数的分布列.

(3)某顾客消费额为元,有两种摸奖方法,

方法一:三次箱内摸奖机会;

方法二:一次箱内摸奖机会.

请问:这位顾客选哪一种方法所得奖金的期望值较大.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知 .

(Ⅰ)若的必要条件,求实数的取值范围;

(Ⅱ)若,“”为真命题,“”为假命题,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系xOy中,以O为极点,x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为;直线l的参数方程为t为参数).直线l与曲线C分别交于MN两点.

1)写出曲线C的直角坐标方程和直线l的普通方程;

2)若点P的极坐标为,求的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知直线l的参数方程为为参数), 椭圆C的参数方程为为参数)。在平面直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,点A的极坐标为(2,

(1)求椭圆C的直角坐标方程和点A在直角坐标系下的坐标

(2)直线l与椭圆C交于P,Q两点,求△APQ的面积

查看答案和解析>>

同步练习册答案