相关习题
 0  264630  264638  264644  264648  264654  264656  264660  264666  264668  264674  264680  264684  264686  264690  264696  264698  264704  264708  264710  264714  264716  264720  264722  264724  264725  264726  264728  264729  264730  264732  264734  264738  264740  264744  264746  264750  264756  264758  264764  264768  264770  264774  264780  264786  264788  264794  264798  264800  264806  264810  264816  264824  266669 

科目: 来源: 题型:

【题目】已知函数.

(Ⅰ)讨论函数的单调性;

(Ⅱ)当时,证明:函数有两个零点;

(Ⅲ)若函数有两个不同的极值点,记作,且,证明为自然对数的底数).

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的左焦点在抛物线的准线上,且椭圆的短轴长为2,分别为椭圆的左,右焦点,分别为椭圆的左,右顶点,设点在第一象限,且轴,连接交椭圆于点,直线的斜率为.

(Ⅰ)求椭圆的方程;

(Ⅱ)若三角形的面积等于四边形的面积,求的值;

(Ⅲ)设点的中点,射线为原点)与椭圆交于点,满足,求的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,平面,点分别为的中点.

(Ⅰ)求证:平面

(Ⅱ)求二面角的正弦值;

(Ⅲ)若为线段上的点,且直线与平面所成的角为,求线段的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】某高中志愿者男志愿者5人,女志愿者3人,这些人要参加社区服务工作.从这些人中随机抽取4人负责文明宣传工作,另外4人负责卫生服务工作.

(Ⅰ)设为事件;“负责文明宣传工作的志愿者中包含女志愿者甲但不包含男志愿者乙”,求事件发生的概率;

(Ⅱ)设表示参加文明宣传工作的女志愿者人数,求随机变量的分布列与数学期望.

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系内,动点到定点的距离与到定直线距离之比为

(Ⅰ)求动点的轨迹的方程;

(Ⅱ)设点是轨迹上两个动点直线与轨迹的另一交点分别为且直线的斜率之积等于,问四边形的面积是否为定值?请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,四边形是矩形,沿对角线折起,使得点在平面内的射影恰好落在边上.

(Ⅰ)求证:平面平面

(Ⅱ)当时,求二面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】由团中央学校部、全国学联秘书处、中国青年报社共同举办的2018年度全国“最美中学生“寻访活动结果出炉啦,此项活动于20186月启动,面向全国中学在校学生,通过投票方式寻访一批在热爱祖国、勤奋学习、热心助人、见义勇为等方面表现突出、自觉树立和践行社会主义核心价值观的“最美中学生”.现随机抽取了30名学生的票数,线成如图所示的茎叶图,若规定票数在65票以上(包括65票)定义为风华组.票数在65票以下(不包括65票)的学生定义为青春组.

(Ⅰ)在这30名学生中,青春组学生中有男生7人,风华组学生中有女生12人,试问有没有的把握认为票数分在青春组或风华组与性别有关;

(Ⅱ)如果用分层抽样的方法从青春组和风华组中抽取5人,再从这5人中随机抽取2人,那么至少有1人在青春组的概率是多少?

(Ⅲ)用样本估计总体,把频率作为概率,若从该地区所有的中学(人数很多)中随机选取4人,用表示所选4人中青春组的人数,试写出的分布列,并求出的数学期望.

附:;其中

独立性检验临界表:

0.100

0.050

0.010

2.706

3.841

6.635

查看答案和解析>>

科目: 来源: 题型:

【题目】设函数的图象上存在两点,使得是以为直角顶点的直角三角形(其中为坐标原点),且斜边的中点恰好在轴上,则实数的取值范围是______

查看答案和解析>>

科目: 来源: 题型:

【题目】为了研究国民收入在国民之间的分配,避免贫富过分悬殊,美国统计学家劳伦茨提出了著名的劳伦茨曲线,如图所示:劳伦茨曲线为直线时,表示收入完全平等,劳伦茨曲线为折线时,表示收入完全不平等记区域为不平等区域,表示其面积,的面积.将,称为基尼系数.对于下列说法:

越小,则国民分配越公平;

②设劳伦茨曲线对应的函数为,则对,均有

③若某国家某年的劳伦茨曲线近似为,则

④若某国家某年的劳伦茨曲线近似为,则

其中不正确的是:(

A.①④B.②③C.①③④D.①②④

查看答案和解析>>

科目: 来源: 题型:

【题目】在极坐标系中,曲线的极坐标方程为,直线的极坐标方程为,设交于两点,中点为的垂直平分线交.为坐标原点,极轴为轴的正半轴建立直角坐标系.

1)求的直角坐标方程与点的直角坐标;

2)求证:.

查看答案和解析>>

同步练习册答案