相关习题
 0  264721  264729  264735  264739  264745  264747  264751  264757  264759  264765  264771  264775  264777  264781  264787  264789  264795  264799  264801  264805  264807  264811  264813  264815  264816  264817  264819  264820  264821  264823  264825  264829  264831  264835  264837  264841  264847  264849  264855  264859  264861  264865  264871  264877  264879  264885  264889  264891  264897  264901  264907  264915  266669 

科目: 来源: 题型:

【题目】如图,在四棱锥中,已知四边形是边长为的正方形,点在底面上的射影为底面的中心点,点在棱上,且的面积为1.

1)若点的中点,求证:平面平面

2)在棱上是否存在一点使得二面角的余弦值为?若存在,求出点的位置;若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】为支援武汉抗击新冠肺炎疫情,军队抽组1400名医护人员于23日起承担武汉火神山专科医院医疗救治任务.此外,从解放军疾病预防控制中心、军事科学院军事医学研究院抽取15名专家组成联合专家组,指导医院疫情防控工作.该医院开设了重症监护病区(),重症病区(),普通病区()三个病区.现在将甲乙丙丁4名专家分配到这三个病区了解情况,要求每个专家去一个病区,每个病区都有专家,一个病区可以有多个专家.已知甲不能去重症监护病区(),乙不能去重症病区(),则一共有__________种分配方式

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,矩形中,,,的中点,点,分别在线段,上运动(其中不与,重合,不与,重合),且,沿折起,得到三棱锥,则三棱锥体积的最大值为__________;当三棱锥体积最大时,其外接球的表面积的值为_______________.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

1)求函数在点处的切线方程;

2)设函数上有且只有一个零点,求的取值范围.(其中为自然对数的底数)

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的离心率是,上顶点坐标为.

1)求椭圆的方程;

2)问是否存在斜率为1的直线与椭圆交于两点,为椭圆的右焦点,的重心分别为,且以线段直径的圆过原点,若存在,求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】某市房管局为了了解该市市民20181月至20191月期间购买二手房情况,首先随机抽样其中200名购房者,并对其购房面积(单位:万元/平方米,进行了一次调查统计,制成了如图1所示的频率分布直方图,接着调查了该市20181月至20191月期间当月在售二手房均价(单位:万元平方米),制成了如图2所示的散点图(图中月份代码1-13分别对应20181月至20191月).

1)试估计该市市民的平均购房面积.

2)现采用分层抽样的方法从购房面积位于40位市民中随机取4人,再从这4人中随机抽取2人,求这2人的购房面积恰好有一人在的概率.

3)根据散点图选两个模型进行拟合,经过数据处理得到两个回归方程,分别为,并得到一些统计量的值,如下表所示:

0.000591

0.000164

0.00050

请利用相关指数判断哪个模型的拟合效果更好,并用拟合效果更好的模型预测20196月份的二手房购房均价(精确到0.001./span>

参考数据:

参考公式:.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四棱锥中,.

1)求证:

2)若的中点,求平面将三棱锥分成的两部分几何体的体积.

查看答案和解析>>

科目: 来源: 题型:

【题目】某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了茎叶图:则下列结论中表述不正确的是

A. 第一种生产方式的工人中,有75%的工人完成生产任务所需要的时间至少80分钟

B. 第二种生产方式比第一种生产方式的效率更高

C. 这40名工人完成任务所需时间的中位数为80

D. 无论哪种生产方式的工人完成生产任务平均所需要的时间都是80分钟.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.(是自然对数的底数)

1)求的单调递减区间;

2)记,若,试讨论上的零点个数.(参考数据:

查看答案和解析>>

科目: 来源: 题型:

【题目】某企业拟对某条生产线进行技术升级,现有两种方案可供选择:方案是报废原有生产线,重建一条新的生产线;方案是对原有生产线进行技术改造.由于受诸多不可控因素的影响,市场销售状态可能会发生变化.该企业管理者对历年产品销售市场行情及回报率进行了调研,编制出下表:

市场销售状态

畅销

平销

滞销

市场销售状态概率

预期平均年利润(单位:万元)

方案

700

400

方案

600

300

1)以预期平均年利润的期望值为决策依据,问:该企业应选择哪种方案?

2)记该生产线升级后的产品(以下简称新产品)的年产量为(万件),通过核算,实行方案时新产品的年度总成本(万元)为,实行方案时新产品的年度总成本(万元)为.已知.若按(1)的标准选择方案,则市场行情为畅销、平销和滞销时,新产品的单价(元)分别为60,且生产的新产品当年都能卖出去.试问:当取何值时,新产品年利润的期望取得最大值?并判断这一年利润能否达到预期目标.

查看答案和解析>>

同步练习册答案