科目: 来源: 题型:
【题目】如图,在四棱锥中,已知四边形是边长为的正方形,点在底面上的射影为底面的中心点,点在棱上,且的面积为1.
(1)若点是的中点,求证:平面平面;
(2)在棱上是否存在一点使得二面角的余弦值为?若存在,求出点的位置;若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】为支援武汉抗击新冠肺炎疫情,军队抽组1400名医护人员于2月3日起承担武汉火神山专科医院医疗救治任务.此外,从解放军疾病预防控制中心、军事科学院军事医学研究院抽取15名专家组成联合专家组,指导医院疫情防控工作.该医院开设了重症监护病区(),重症病区(),普通病区()三个病区.现在将甲乙丙丁4名专家分配到这三个病区了解情况,要求每个专家去一个病区,每个病区都有专家,一个病区可以有多个专家.已知甲不能去重症监护病区(),乙不能去重症病区(),则一共有__________种分配方式
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,矩形中,,,为的中点,点,分别在线段,上运动(其中不与,重合,不与,重合),且,沿将折起,得到三棱锥,则三棱锥体积的最大值为__________;当三棱锥体积最大时,其外接球的表面积的值为_______________.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆的离心率是,上顶点坐标为.
(1)求椭圆的方程;
(2)问是否存在斜率为1的直线与椭圆交于两点,为椭圆的右焦点,,的重心分别为,且以线段直径的圆过原点,若存在,求出直线的方程;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】某市房管局为了了解该市市民2018年1月至2019年1月期间购买二手房情况,首先随机抽样其中200名购房者,并对其购房面积(单位:万元/平方米,进行了一次调查统计,制成了如图1所示的频率分布直方图,接着调查了该市2018年1月至2019年1月期间当月在售二手房均价(单位:万元平方米),制成了如图2所示的散点图(图中月份代码1-13分别对应2018年1月至2019年1月).
(1)试估计该市市民的平均购房面积.
(2)现采用分层抽样的方法从购房面积位于的40位市民中随机取4人,再从这4人中随机抽取2人,求这2人的购房面积恰好有一人在的概率.
(3)根据散点图选和两个模型进行拟合,经过数据处理得到两个回归方程,分别为和,并得到一些统计量的值,如下表所示:
0.000591 | 0.000164 | |
0.00050 |
请利用相关指数判断哪个模型的拟合效果更好,并用拟合效果更好的模型预测2019年6月份的二手房购房均价(精确到0.001)./span>
参考数据:,,,,,,,,
参考公式:.
查看答案和解析>>
科目: 来源: 题型:
【题目】某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了茎叶图:则下列结论中表述不正确的是
A. 第一种生产方式的工人中,有75%的工人完成生产任务所需要的时间至少80分钟
B. 第二种生产方式比第一种生产方式的效率更高
C. 这40名工人完成任务所需时间的中位数为80
D. 无论哪种生产方式的工人完成生产任务平均所需要的时间都是80分钟.
查看答案和解析>>
科目: 来源: 题型:
【题目】某企业拟对某条生产线进行技术升级,现有两种方案可供选择:方案是报废原有生产线,重建一条新的生产线;方案是对原有生产线进行技术改造.由于受诸多不可控因素的影响,市场销售状态可能会发生变化.该企业管理者对历年产品销售市场行情及回报率进行了调研,编制出下表:
市场销售状态 | 畅销 | 平销 | 滞销 | |
市场销售状态概率 | ||||
预期平均年利润(单位:万元) | 方案 | 700 | 400 | |
方案 | 600 | 300 |
(1)以预期平均年利润的期望值为决策依据,问:该企业应选择哪种方案?
(2)记该生产线升级后的产品(以下简称“新产品”)的年产量为(万件),通过核算,实行方案时新产品的年度总成本(万元)为,实行方案时新产品的年度总成本(万元)为.已知,.若按(1)的标准选择方案,则市场行情为畅销、平销和滞销时,新产品的单价(元)分别为60,,,且生产的新产品当年都能卖出去.试问:当取何值时,新产品年利润的期望取得最大值?并判断这一年利润能否达到预期目标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com