科目: 来源: 题型:
【题目】新型冠状病毒属于属的冠状病毒,人群普遍易感,病毒感染者一般有发热咳嗽等临床表现,现阶段也出现无症状感染者.基于目前的流行病学调查和研究结果,病毒潜伏期一般为1-14天,大多数为3-7天.为及时有效遏制病毒扩散和蔓延,减少新型冠状病毒感染对公众健康造成的危害,需要对与确诊新冠肺炎病人接触过的人员进行检查.某地区对与确诊患者有接触史的1000名人员进行检查,检查结果统计如下:
发热且咳嗽 | 发热不咳嗽 | 咳嗽不发热 | 不发热也不咳嗽 | |
确诊患病 | 200 | 150 | 80 | 30 |
确诊未患病 | 150 | 150 | 120 | 120 |
(1)能否在犯错率不超过0.001的情况下,认为新冠肺炎密切接触者有发热症状与最终确诊患病有关.
临界值表:
0.10 | 0.05 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 6.645 | 7.879 | 10.828 |
(2)在全国人民的共同努力下,尤其是全体医护人员的辛勤付出下,我国的疫情得到较好控制,现阶段防控重难点主要在境外输入病例和无症状感染者(即无相关临床表现但核酸检测或血清特异性免疫球蛋白M抗体检测阳者).根据防控要求,无症状感染者虽然还没有最终确诊患2019新冠肺炎,但与其密切接触者仍然应当采取居家隔离医学观察14天,已知某人曾与无症状感染者密切接触,而且在家已经居家隔离10天未有临床症状,若该人员居家隔离第天出现临床症状的概率为,,两天之间是否出现临床症状互不影响,而且一旦出现临床症状立刻送往医院核酸检查并采取必要治疗,若14天内未出现临床症状则可以解除居家隔离,求该人员在家隔离的天数(含有临床症状表现的当天)的分布列以及数学期望值.(保留小数点后两位)
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆,点,,分别为椭圆的左焦点、右顶点和下顶点,的面积为,且椭圆的离心率为.
(1)求椭圆的标准方程;
(2)若点为椭圆上一点,直线与椭圆交于不同的两点,,且(点为坐标原点),求的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】某公司人数众多为鼓励员工利用网络进行营销,准备为员工办理手机流量套餐.为了解员工手机流量使用情况,按照男员工和女员工的比例分层抽样,得到名员工的月使用流量(单位:)的数据,其频率分布直方图如图所示.
(1)求的值,并估计这名员工月使用流量的平均值(同一组中的数据用中点值代表;
(2)若将月使用流量在以上(含)的员工称为“手机营销达人”,填写下面的列联表,能否有超过的把握认为“成为手机营销达人与员工的性别有关”;
男员工 | 女员工 | 合计 | |
手机营销达人 | 5 | ||
非手机营销达人 | |||
合计 | 200/span> |
参考公式及数据:,其中.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
(3)若这名员工中有名男员工每月使用流量在,从每月使用流量在的员工中随机抽取名进行问卷调查,记女员工的人数为,求的分布列和数学期望.
查看答案和解析>>
科目: 来源: 题型:
【题目】将正方形沿对角线折成直二面角,有如下四个结论:
(1);(2)是等边三角形;
(3)与平面所成的角为60°;(4)与所成的角为.
其中错误的结论是( )
A.(1)B.(2)C.(3)D.(4)
查看答案和解析>>
科目: 来源: 题型:
【题目】下列命题中,错误命题是
A. “若,则”的逆命题为真
B. 线性回归直线必过样本点的中心
C. 在平面直角坐标系中到点和的距离的和为的点的轨迹为椭圆
D. 在锐角中,有
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=|x+m|+|2x-1|.
(1)当m=-1时,求不等式f(x)≤2的解集;
(2)若f(x)≤|2x+1|的解集包含,求m的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,椭圆 的左右焦点分别为的、,离心率为;过抛物线焦点的直线交抛物线于、两点,当时, 点在轴上的射影为。连结并延长分别交于、两点,连接; 与的面积分别记为, ,设.
(Ⅰ)求椭圆和抛物线的方程;
(Ⅱ)求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com