相关习题
 0  264745  264753  264759  264763  264769  264771  264775  264781  264783  264789  264795  264799  264801  264805  264811  264813  264819  264823  264825  264829  264831  264835  264837  264839  264840  264841  264843  264844  264845  264847  264849  264853  264855  264859  264861  264865  264871  264873  264879  264883  264885  264889  264895  264901  264903  264909  264913  264915  264921  264925  264931  264939  266669 

科目: 来源: 题型:

【题目】(其中)的图象如图所示,为了得到的图象,则只要将的图象上所有的点(

A.向左平移个单位长度,纵坐标缩短到原来的,横坐标不变

B.向左平移个单位长度,纵坐标伸长到原来的3倍横坐标不变

C.向右平移个单位长度,纵坐标缩短到原来的,横坐标不变

D.向右平移个单位长度,纵坐标伸长到原来的3倍,横坐标不变

查看答案和解析>>

科目: 来源: 题型:

【题目】在三棱柱中,,侧面底面D是棱的中点.

(1)求证:平面平面

(2)若,求二面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】某大型工厂招聘到一大批新员工.为了解员工对工作的熟练程度,从中随机抽取100人组成样本,统计他们每天加工的零件数,得到如下数据:

将频率作为概率,解答下列问题:

(1)当时,从全体新员工中抽取2名,求其中恰有1名日加工零件数达到240及以上的概率;

(2)若根据上表得到以下频率分布直方图,估计全体新员工每天加工零件数的平均数为222个,求的值(每组数据以中点值代替);

(3)在(2)的条件下,工厂按工作熟练度将新员工分为三个等级:日加工零件数未达200的员工为C级;达到200但未达280的员工为B级;其他员工为A级.工厂打算将样本中的员工编入三个培训班进行全员培训:A,B,C三个等级的员工分别参加高级、中级、初级培训班,预计培训后高级、中级、初级培训班的员工每人的日加工零件数分别可以增加20,30,50.现从样本中随机抽取1人,其培训后日加工零件数增加量为X,求随机变量X的分布列和期望.

查看答案和解析>>

科目: 来源: 题型:

【题目】在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线,直线l的参数方程为:t为参数),直线l与曲线C分别交于两点.

1)写出曲线C和直线l的普通方程;

2)若点,求的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,四棱锥中,四边形是边长为2的菱形

1)证明:平面平面

2)当平面与平面所成锐二面角的余弦值,求直线与平面所成角正弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】某城市实施了机动车尾号限行,该市报社调查组为了解市区公众对“车辆限行”的态度,随机抽查了50人,将调查情况进行整理后制成下表:

年龄(岁)

[1525)

[2535)

[3545)

[4555)

[5565)

[6575]

频数

5

10

15

10

5

5

赞成人数

4

6

9

6

3

4

(Ⅰ)请估计该市公众对“车辆限行”的赞成率和被调查者的年龄平均值;

)若从年龄在[1525)[2535)的被调查者中各随机选取两人进行追踪调查,记被选4人中不赞成“车辆限行”的人数为,求随机变量的分布列和数学期望;

若在这50名被调查者中随机发出20份的调查问卷,记为所发到的20人中赞成“车辆限行”的人数,求使概率取得最大值的整数.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知抛物线的内接等边三角形的面积为(其中为坐标原点).

(1)试求抛物线的方程;

(2)已知点两点在抛物线上,是以点为直角顶点的直角三角形.

①求证:直线恒过定点;

②过点作直线的垂线交于点,试求点的轨迹方程,并说明其轨迹是何种曲线.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在三棱台中,GH分别为上的点,平面平面.

1)证明:平面平面

2)若,求二面角的大小.

查看答案和解析>>

科目: 来源: 题型:

【题目】某烘焙店加工一个成本为60元的蛋糕,然后以每个120元的价格出售,如果当天卖不完,剩下的这种蛋糕作餐厨垃圾处理.

1)若烘焙店一天加工16个这种蛋糕,,求当天的利润(单位:元)关于当天需求量(单位:个,)的函数解析式;

2)烘焙店记录了100天这种蛋糕的日需求量(单位:个),整理得下表:

日需求量

14

15

16

17

18

19

20

频数

10

20

16

16

15

13

10

①若烘焙店一天加工16个这种蛋糕,表示当天的利润(单位:元),求的分布列与数学期望及方差;

②若烘焙店一天加工16个或17个这种蛋糕,仅从获得利润大的角度考虑,你认为应加工16个还是17个?请说明理由.

查看答案和解析>>

同步练习册答案