相关习题
 0  264792  264800  264806  264810  264816  264818  264822  264828  264830  264836  264842  264846  264848  264852  264858  264860  264866  264870  264872  264876  264878  264882  264884  264886  264887  264888  264890  264891  264892  264894  264896  264900  264902  264906  264908  264912  264918  264920  264926  264930  264932  264936  264942  264948  264950  264956  264960  264962  264968  264972  264978  264986  266669 

科目: 来源: 题型:

【题目】已知函数.

(1)求函数的极值;

(2)若函数有两个零点,求实数取值范围;

(3)若当时,恒成立,求实数的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系中,已知分别为椭圆的左、右焦点,且椭圆经过点和点,其中为椭圆的离心率.

(1)求椭圆的方程;

(2)过点的直线椭圆于另一点,点在直线上,且.若,求直线的斜率.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图是一块地皮,其中 是直线段,曲线段是抛物线的一部分,且点是该抛物线的顶点, 所在的直线是该抛物线的对称轴.经测量, km, km, .现要从这块地皮中划一个矩形来建造草坪,其中点在曲线段上,点 在直线段上,点在直线段上,设km,矩形草坪的面积为km2

(1)求,并写出定义域;

(2)当为多少时,矩形草坪的面积最大?

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数,其中

(1)若函数在点处的切线方程为,求的值;

(2)若函数有两个极值点,证明:成等差数列;

(3)若函数有三个零点,对任意的,不等式恒成立,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数

(1)当,且时,试求函数的最小值;

(2)若对任意的恒成立,试求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在矩形纸片中,,在线段上取一点,沿着过点的直线将矩形右下角折起,使得右下角顶点恰好落在矩形的左边边上.设折痕所在直线与交于点,记折痕的长度为,翻折角

(1)探求的函数关系,推导出用表示的函数表达式;

(2)设的长为,求的取值范围;

(3)确定点在何处时,翻折后重叠部分的图形面积最小.

查看答案和解析>>

科目: 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴,取相同长度单位建立极坐标系,直线的极坐标方程为.

(Ⅰ)求曲线和直线的直角坐标方程;

(Ⅱ)直线轴交点为,经过点的直线与曲线交于两点,证明:为定值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数f(x)=ln (x+1)-xa∈R.

(1)当a>0时,求函数f(x)的单调区间;

(2)若存在x>0,使f(x)+x+1<- (a∈Z)成立,求a的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】某种规格的矩形瓷砖根据长期检测结果,各厂生产的每片瓷砖质量都服从正态分布,并把质量在之外的瓷砖作为废品直接回炉处理,剩下的称为正品.

(Ⅰ)从甲陶瓷厂生产的该规格瓷砖中抽取10片进行检查,求至少有1片是废品的概率;

(Ⅱ)若规定该规格的每片正品瓷砖的“尺寸误差”计算方式为:设矩形瓷砖的长与宽分别为,则“尺寸误差”,按行业生产标准,其中“优等”、“一级”、“合格”瓷砖的“尺寸误差”范围分别是(正品瓷砖中没有“尺寸误差”大于的瓷砖),每片价格分别为7.5元、6.5元、5.0元.现分别从甲、乙两厂生产的该规格的正品瓷砖中随机抽取100片瓷砖,相应的“尺寸误差”组成的样本数据如下:

尺寸误差

0

0.1

0.2

0.3

0.4

0.5

0.6

频数

10

30

30

5

10

5

10

(甲厂瓷砖的“尺寸误差”频数表)用这个样本的频率分布估计总体分布,将频率视为概率.

(ⅰ)记甲厂该种规格的2片正品瓷砖卖出的钱数为(元,求的分布列及数学期望

(ⅱ)由如图可知,乙厂生产的该规格的正品瓷砖只有“优等”、“一级”两种,求5片该规格的正品瓷砖卖出的钱数不少于36元的概率.

附:若随机变量服从正态分布,则

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在多面体中,四边形是边长为的菱形,交于点,平面平面.

(1)求证:平面

(2)若为等边三角形,点的中点,求二面角的余弦值.

查看答案和解析>>

同步练习册答案