相关习题
 0  264801  264809  264815  264819  264825  264827  264831  264837  264839  264845  264851  264855  264857  264861  264867  264869  264875  264879  264881  264885  264887  264891  264893  264895  264896  264897  264899  264900  264901  264903  264905  264909  264911  264915  264917  264921  264927  264929  264935  264939  264941  264945  264951  264957  264959  264965  264969  264971  264977  264981  264987  264995  266669 

科目: 来源: 题型:

【题目】如图,AB为⊙O的直径,点CO上,且AOC120°PA⊥平面ABCAB=4,PA=2DPC的中点,点MO上的动点(不与AC重合).

(1)证明:ADPB

(2)当三棱锥DACM体积最大时,求面MAD与面MCD所成二面角的正弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如表中数表为“森德拉姆筛”,其特点是每行每列都成等差数列,记第i行,第j列的数为aij,则数字41在表中出现的次数为(  )

 2

 3

 4

 5

 6

 7

 3

 5

 7

 9

 11

 13

 4

 7

 10

 13

 16

 19

 5

 9

 13

 17

 21

 25

 6

 11

 16

 21

 26

 31

 7

 13

 19

 25

 31

 37

A.4B.8C.9D.12

查看答案和解析>>

科目: 来源: 题型:

【题目】“柯西不等式”是由数学家柯西在研究数学分析中的“流数”问题时得到的,但从历史的角度讲,该不等式应当称为柯西﹣﹣布尼亚科夫斯基﹣﹣施瓦茨不等式,因为正是后两位数学家彼此独立地在积分学中推而广之,才将这一不等式推广到完善的地步,在高中数学选修教材4﹣5中给出了二维形式的柯西不等式:a2+b2)(c2+d2ac+bd2当且仅当adbc(即)时等号成立.该不等式在数学中证明不等式和求函数最值等方面都有广泛的应用.根据柯西不等式可知函数的最大值及取得最大值时x的值分别为(  )

A.B.C.D.

查看答案和解析>>

科目: 来源: 题型:

【题目】环保部门要对所有的新车模型进行广泛测试,以确定它的行车里程的等级,右表是对 100 辆新车模型在一个耗油单位内行车里程(单位:公里)的测试结果.

(Ⅰ)做出上述测试结果的频率分布直方图,并指出其中位数落在哪一组;

(Ⅱ)用分层抽样的方法从行车里程在区间[38,40)与[40,42)的新车模型中任取5辆,并从这5辆中随机抽取2辆,求其中恰有一个新车模型行车里程在[40,42)内的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数

1)求函数图像在处的切线方程;

2)证明:

3)若不等式对于任意的均成立,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的焦距为,椭圆上任意一点到椭圆两个焦点的距离之和为6.

(Ⅰ)求椭圆的方程;

(Ⅱ)设直线 与椭圆交于两点,点(0,1),且=,求直线的方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四棱锥中,平面,且,点上.

1)求证:

2)若二面角的大小为,求与平面所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】甲、乙、丙三人参加微信群抢红包游戏,规则如下:每轮游戏发个红包,每个红包金额为元,已知在每轮游戏中所产生的个红包金额的频率分布直方图如图所示

1的值,并根据频率分布直方图,估计红包金额的众数;

2以频率分布直方图中的频率作为概率,若甲、乙、丙三人从中各抢到一个红包,其中金额在的红包个数为,求的分布列和期望

查看答案和解析>>

科目: 来源: 题型:

【题目】已知集合A={1234}和集合B={123n},其中n≥5.从集合A中任取三个不同的元素,其中最小的元素用S表示;从集合B中任取三个不同的元素,其中最大的元素用T表示.记XTS.

(1)当n5时,求随机变量X的概率分布和数学期望

(2)求

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,四棱锥P-ABCD的底面ABCD是矩形,PA⊥平面ABCD PAAD2EF分别为PAAB的中点,且DFCE.

(1)求AB的长;

(2)求直线CF与平面DEF所成角的正弦值.

查看答案和解析>>

同步练习册答案