相关习题
 0  264812  264820  264826  264830  264836  264838  264842  264848  264850  264856  264862  264866  264868  264872  264878  264880  264886  264890  264892  264896  264898  264902  264904  264906  264907  264908  264910  264911  264912  264914  264916  264920  264922  264926  264928  264932  264938  264940  264946  264950  264952  264956  264962  264968  264970  264976  264980  264982  264988  264992  264998  265006  266669 

科目: 来源: 题型:

【题目】设抛物线的方程为,其中常数是抛物线的焦点.

(1)若直线被抛物线所截得的弦长为6,求的值;

(2)设是点关于顶点的对称点,是抛物线上的动点,求的最大值;

(3)设是两条互相垂直,且均经过点的直线,与抛物线交于点与抛物线交于点,若点满足,求点的轨迹方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,空间几何体由两部分构成,上部是一个底面半径为1,高为2的圆锥,下部是一个底面半径为1,高为2的圆柱,圆锥和圆柱的轴在同一直线上,圆锥的下底面与圆柱的上底面重合,点是圆锥的顶点,是圆柱下底面的一条直径,是圆柱的两条母线,是弧的中点.

(1)求异面直线所成的角的大小;

(2)求点到平面的距离.

查看答案和解析>>

科目: 来源: 题型:

【题目】甲乙两人分别投掷两颗骰子与一颗骰子,设甲的两颗骰子的点数分别为,乙的骰子的点数为,则掷出的点数满足的概率为________(用最简分数表示).

查看答案和解析>>

科目: 来源: 题型:

【题目】给定数列,记该数列前中的最大项为,即,该数列后中的最小项为,记

1)对于数列:3471,求出相应的

2)若是数列的前项和,且对任意,有,其中为实数,.

(ⅰ)设,证明:数列是等比数列;

(ⅱ)若数列对应的满足对任意的正整数恒成立,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,以椭圆)的右焦点为圆心,为半径作圆(其中为已知椭圆的半焦距),过椭圆上一点作此圆的切线,切点为.

1)若为椭圆的右顶点,求切线长

2)设圆轴的右交点为,过点作斜率为)的直线与椭圆相交于两点,若恒成立,且.求:

(ⅰ)的取值范围;

(ⅱ)直线被圆所截得弦长的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】某单位有员工1000名,平均每人每年创造利润10万元,为了增加企业竞争力,决定优化产业结构,调整出)名员工从事第三产业,调整后这名员工他们平均每人创造利润为万元,剩下的员工平均每人每年创造的利润可以提高.

1)若要保证剩余员工创造的年总利润不低于原来1000名员工创造的年总利润,则最多调整多少名员工从事第三产业?

2)设,若调整出的员工创造出的年总利润始终不高于剩余员工创造的年总利润,求的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知多面体均垂直于平面

(1)证明:⊥平面

(2)求直线与平面所成的角的正弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】某旅游胜地欲开发一座景观山,从山的侧面进行勘测,迎面山坡线由同一平面的两段抛物线组成,其中所在的抛物线以为顶点、开口向下,所在的抛物线以为顶点、开口向上,以过山脚(点)的水平线为轴,过山顶(点)的铅垂线为轴建立平面直角坐标系如图(单位:百米).已知所在抛物线的解析式所在抛物线的解析式为

(1)求值,并写出山坡线的函数解析式;

(2)在山坡上的700米高度(点)处恰好有一小块平地,可以用来建造索道站,索道的起点选择在山脚水平线上的点处,(米),假设索道可近似地看成一段以为顶点、开口向上的抛物线当索道在上方时,索道的悬空高度有最大值,试求索道的最大悬空高度;

(3)为了便于旅游观景,拟从山顶开始、沿迎面山坡往山下铺设观景台阶,台阶每级的高度为20厘米,长度因坡度的大小而定,但不得少于20厘米,每级台阶的两端点在坡面上(见图).试求出前三级台阶的长度(精确到厘米),并判断这种台阶能否一直铺到山脚,简述理由?

查看答案和解析>>

科目: 来源: 题型:

【题目】若正项数列满足:,则称此数列为“比差等数列”.

1)试写出一个“比差等数列”的前项;

2)设数列是一个“比差等数列”,问是否存在最小值,如存在,求出最小值;如不存在,请说明理由;

3)已知数列是一个“比差等数列”,为其前项的和,试证明:

查看答案和解析>>

科目: 来源: 题型:

【题目】若存在与正实数,使得成立,则称函数处存在距离为的对称点,把具有这一性质的函数称之为“型函数”.

1)设,试问是否是“型函数”?若是,求出实数的值;若不是,请说明理由;

2)设对于任意都是“型函数”,求实数的取值范围.

查看答案和解析>>

同步练习册答案