相关习题
 0  264853  264861  264867  264871  264877  264879  264883  264889  264891  264897  264903  264907  264909  264913  264919  264921  264927  264931  264933  264937  264939  264943  264945  264947  264948  264949  264951  264952  264953  264955  264957  264961  264963  264967  264969  264973  264979  264981  264987  264991  264993  264997  265003  265009  265011  265017  265021  265023  265029  265033  265039  265047  266669 

科目: 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知曲线的参数方程是为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程是.

(1)写出的极坐标方程和的直角坐标方程;

(2)已知点的极坐标分别为,直线与曲线相交于两点,射线与曲线相交于点,射线与曲线相交于点,求的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性;

(2)设,当时,对任意,存在,使,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知抛物线的焦点到准线的距离为,直线与抛物线交于两点,过这两点分别作抛物线的切线,且这两条切线相交于点.

(1)若的坐标为,求的值;

(2)设线段的中点为,点的坐标为,过的直线与线段为直径的圆相切,切点为,且直线与抛物线交于两点,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】近期,某公交公司分别推出支付宝和微信扫码支付乘车活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用扫码支付.某线路公交车队统计了活动刚推出一周内每一天使用扫码支付的人次,用表示活动推出的天数,表示每天使用扫码支付的人次(单位:十人次),统计数据如表1所示:

表一

1

2

3

4

5

6

7

6

11

21

34

66

101

196

根据以上数据,绘制了如下图所示的散点图.

(1)根据散点图判断,在推广期内,均为大于零的常数)哪一个适宜作为扫码支付的人次关于活动推出天数的回归方程类型?(给出判断即可,不必说明理由);

(2)根据(1)的判断结果及表1中的数据,求关于的回归方程,并预测活动推出第8天使用扫码支付的人次;

(3)推广期结束后,车队对乘客的支付方式进行统计,结果如表2

表2

支付方式

现金

乘车卡

扫码

比例

10%

60%

30%

已知该线路公交车票价为2元,使用现金支付的乘客无优惠,使用乘车卡支付的乘客享受8折优惠,扫码支付的乘客随机优惠,根据统计结果得知,使用扫码支付的乘客,享受7折优惠的概率为,享受8折优惠的概率为,享受9折优惠的概率为.根据所给数据以事件发生的频率作为相应事件发生的概率,估计一名乘客一次乘车的平均费用.

参考数据:

62.14

1.54

2535

50.12

3.47

其中

参考公式:对于一组数据,……,其回归直线的斜率和截距的最小二乘估计公式分别为:.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,三棱台中, 侧面与侧面是全等的梯形,若,且.

(Ⅰ)若 ,证明: ∥平面

(Ⅱ)若二面角,求平面与平面所成的锐二面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知数列{an}满足:a1+a2+a3+…+an=n-an,(n=1,2,3,…)

(Ⅰ)求证:数列{an-1}是等比数列;

(Ⅱ)令bn=(2-n)(an-1)(n=1,2,3,…),如果对任意n∈N*,都有bn+t≤t2,求实数t的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数有两个零点 ,则下面说法正确的是( )

A. B. C. D. 有极小值点,且

查看答案和解析>>

科目: 来源: 题型:

【题目】记不等式组 ,表示的平面区域为 .下面给出的四个命题: 其中真命题的是:

A.B.C.D.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数

(Ⅰ)若,且是函数的一个极值,求函数的最小值;

(Ⅱ)若,求证:.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四面体中,,.

(Ⅰ)求证:

(Ⅱ)若与平面所成的角为,点的中点,求二面角的大小.

查看答案和解析>>

同步练习册答案