相关习题
 0  264866  264874  264880  264884  264890  264892  264896  264902  264904  264910  264916  264920  264922  264926  264932  264934  264940  264944  264946  264950  264952  264956  264958  264960  264961  264962  264964  264965  264966  264968  264970  264974  264976  264980  264982  264986  264992  264994  265000  265004  265006  265010  265016  265022  265024  265030  265034  265036  265042  265046  265052  265060  266669 

科目: 来源: 题型:

【题目】已知椭圆,左、右顶点分别为,上、下顶点分别为,且为等边三角形,过点的直线与椭圆轴右侧的部分交于两点,为坐标原点.

1)求椭圆的标准方程;

2)求面积的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数为自然对数的底数.

1)当时,求函数的极值;

2)若,求证:.

查看答案和解析>>

科目: 来源: 题型:

【题目】金秋九月,丹桂飘香,某高校迎来了一大批优秀的学生.新生接待其实也是和社会沟通的一个平台.校团委、学生会从在校学生中随机抽取了160名学生,对是否愿意投入到新生接待工作进行了问卷调查,统计数据如下:

愿意

不愿意

男生

60

20

女士

40

40

1)根据上表说明,能否有99%把握认为愿意参加新生接待工作与性别有关;

2)现从参与问卷调查且愿意参加新生接待工作的学生中,采用按性别分层抽样的方法,选取10人.若从这10人中随机选取3人到火车站迎接新生,设选取的3人中女生人数为,写出的分布列,并求

附:,其中

0.05

0.01

0.001

3.841

6.635

10.828

查看答案和解析>>

科目: 来源: 题型:

【题目】在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的参数方程为为参数),直线经过点且倾斜角为.

1)求曲线的极坐标方程和直线的参数方程;

2)已知直线与曲线交于,满足的中点,求.

查看答案和解析>>

科目: 来源: 题型:

【题目】金秋九月,丹桂飘香,某高校迎来了一大批优秀的学生,新生接待其实也是和社会沟通的一个平台.校团委、学生会从在校学生中随机抽取了160名学生,对是否愿意投入到新生接待工作进行了问卷调查,统计数据如下:

愿意

不愿意

男生

60

20

女生

40

40

1)通过估算,试判断男、女哪种性别的学生愿意投入到新生接待工作的概率更大.

2)能否有99%的把握认为,愿意参加新生接待工作与性别有关?

附:,其中

0.05

0.01

0.001

3.841

6.635

10.828

查看答案和解析>>

科目: 来源: 题型:

【题目】中国古典乐器一般按八音分类.八音是我国最早按乐器的制造材料来对乐器进行分类的方法,最先见于《周礼·春官·大师》,分为金、石、土、革、丝、木、匏(páo)、竹八音.其中金、石、木、革为打击乐器,土、匏、竹为吹奏乐器,为弹拨乐器,现从打击乐器、弹拨乐器中任取不同的两音,含有弹拨乐器的概率为(

A.B.C.D.

查看答案和解析>>

科目: 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为.(为参数)以坐标原点为极点,轴的正半轴为极轴建立极坐标系,点的极坐标为,直线的极坐标方程为.

1)求的直角坐标和 l的直角坐标方程;

2)把曲线上各点的横坐标伸长为原来的倍,纵坐标伸长为原来的倍,得到曲线上动点,求中点到直线距离的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】某市旅游局为尽快恢复受疫情影响的旅游业,准备在本市的景区推出旅游一卡通(年卡).为了更科学的制定一卡通的有关条例,市旅游局随机调查了2019年到本市景区旅游的1000个游客的年旅游消费支出(单位:百元),并制成如下频率分布直方图:

由频率分布直方图,可近似地认为到本市景区旅游的游客,其旅游消费支出服从正态分布,其中近似为样本平均数(同一组数据用该组区间的中点值作代表).

1) 若2019年到本市景区旅游游客为500万人,试估计2019年有多少游客在本市的年旅游消费支出不低于1820元;

2) 现依次抽取个游客,假设每个游客的旅游消费支出相互独立,记事件表示“连续3人的旅游消费支出超出”.若表示的概率,为常数),且.

)求

)判断并证明数列从第三项起的单调性,试用概率统计知识解释其实际意义.

参考数据:

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数().

1)讨论函数的单调性;

2)求证: .

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的离心率为分别为椭圆的左右焦点,点为椭圆上的一动点,面积的最大值为2.

1)求椭圆的方程;

2)直线与椭圆的另一个交点为,点,证明:直线与直线关于轴对称.

查看答案和解析>>

同步练习册答案