相关习题
 0  264868  264876  264882  264886  264892  264894  264898  264904  264906  264912  264918  264922  264924  264928  264934  264936  264942  264946  264948  264952  264954  264958  264960  264962  264963  264964  264966  264967  264968  264970  264972  264976  264978  264982  264984  264988  264994  264996  265002  265006  265008  265012  265018  265024  265026  265032  265036  265038  265044  265048  265054  265062  266669 

科目: 来源: 题型:

【题目】如图,在四棱锥中,平面平面ABCD,底面ABCD是边长为2的菱形,点EF分别为棱DCBC的中点,点G是棱SC靠近点C的四等分点.

求证:(1)直线平面EFG

2)直线平面SDB.

查看答案和解析>>

科目: 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,直线的极坐标方程为

1)若直线与曲线至多只有一个公共点,求实数的取值范围;

2)若直线与曲线相交于两点,且的中点为,求点的轨迹方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

1)若恒成立,.的最大值;

2)若函数有且只有一个零点,且满足条件的,使不等式恒成立,求实数的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】垃圾分类,是指按一定规定或标准将垃圾分类储存、分类投放和分类搬运,从而转变成公共资源的一系列活动的总称.分类的目的是提高垃圾的资源价值和经济价值,力争物尽其用.2019625日,生活垃圾分类制度入法.到2020年底,先行先试的46个重点城市,要基本建成垃圾分类处理系统;其他地级城市实现公共机构生活垃圾分类全覆盖.某机构欲组建一个有关垃圾分类相关事宜的项目组,对各个地区垃圾分类的处理模式进行相关报道.该机构从600名员工中进行筛选,筛选方法:每位员工测试三项工作,3项测试中至少2项测试不合格的员工,将被认定为暂定,有且只有一项测试不合格的员工将再测试两项,如果这两项中有1项以上(含1项)测试不合格,将也被认定为暂定,每位员工测试三项工作相互独立,每一项测试不合格的概率均为

1)记某位员工被认定为暂定的概率为,求

2)每位员工不需要重新测试的费用为90元,需要重新测试的总费用为150元,除测试费用外,其他费用总计为1万元,若该机构的预算为8万元,且该600名员工全部参与测试,问上述方案是否会超过预算?请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知点是抛物线上一点,点为抛物线的焦点,.

1)求直线的方程;

2)若直线与抛物线的另一个交点为,曲线在点与点处的切线分别为,直线相交于点,求的面积.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四棱锥中,底面,底面为直角梯形,分别为线段的中点.

1)证明:平面∥平面

2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的参数方程为为参数),直线经过点且倾斜角为.

1)求曲线的极坐标方程和直线的参数方程;

2)已知直线与曲线交于,满足的中点,求.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,椭圆的左、右顶点分别为,上、下顶点分别为,且为等边三角形,过点的直线与椭圆轴右侧的部分交于两点.

1)求椭圆的标准方程;

2)求四边形面积的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】金秋九月,丹桂飘香,某高校迎来了一大批优秀的学生.新生接待其实也是和社会沟通的一个平台.校团委、学生会从在校学生中随机抽取了160名学生,对是否愿意投入到新生接待工作进行了问卷调查,统计数据如下:

愿意

不愿意

男生

60

20

女士

40

40

1)根据上表说明,能否有99%把握认为愿意参加新生接待工作与性别有关;

2)现从参与问卷调查且愿意参加新生接待工作的学生中,采用按性别分层抽样的方法,选取10人.若从这10人中随机选取3人到火车站迎接新生,设选取的3人中女生人数为,写出的分布列,并求

附:,其中

0.05

0.01

0.001

3.841

6.635

10.828

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为,(为参数),直线的普通方程为,设的交点为,当变化时,记点的轨迹为曲线. 在以原点为极点,轴正半轴为极轴的极坐标系中,直线的方程为.

1)求曲线的普通方程;

2)设点上,点上,若直线的夹角为,求的最大值.

查看答案和解析>>

同步练习册答案