科目: 来源: 题型:
【题目】某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.
(1)求顾客抽奖1次能获奖的概率;
(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为,求的分布列和数学期望.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图所示,四棱锥中,侧面底面,底面是平行四边形,,,,是中点,点在线段上.
(Ⅰ)证明:;
(Ⅱ)若 ,求实数使直线与平面所成角和直线与平面所成角相等.
查看答案和解析>>
科目: 来源: 题型:
【题目】某运动制衣品牌为了成衣尺寸更精准,现选择15名志愿者,对其身高和臂展进行测量(单位:厘米),左图为选取的15名志愿者身高与臂展的折线图,右图为身高与臂展所对应的散点图,并求得其回归方程为,以下结论中不正确的为
A. 15名志愿者身高的极差小于臂展的极差
B. 15名志愿者身高和臂展成正相关关系,
C. 可估计身高为190厘米的人臂展大约为189.65厘米,
D. 身高相差10厘米的两人臂展都相差11.6厘米,
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,极坐标系中,弧所在圆的圆心分别为,曲线是弧,曲线是弧,曲线是弧,曲线是弧.
(1)分别写出的极坐标方程;
(2)直线的参数方程为(为参数),点的直角坐标为,若直线与曲线有两个不同交点,求实数的取值范围,并求出的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】
在平面直角坐标系xOy中,点B与点A(-1,1)关于原点O对称,P是动点,且直线AP与BP的斜率之积等于.
(Ⅰ)求动点P的轨迹方程;
(Ⅱ)设直线AP和BP分别与直线x=3交于点M,N,问:是否存在点P使得△PAB与△PMN的面积相等?若存在,求出点P的坐标;若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】据历年大学生就业统计资料显示:某大学理工学院学生的就业去向涉及公务员、教师、金融、商贸、公司和自主创业等六大行业.2020届该学院有数学与应用数学、计算机科学与技术和金融工程等三个本科专业,毕业生人数分别是70人,140人和210人.现采用分层抽样的方法,从该学院毕业生中抽取18人调查学生的就业意向.
(1)应从该学院三个专业的毕业生中分别抽取多少人?
(2)国家鼓励大学生自主创业,在抽取的18人中,含有“自主创业”就业意向的有6人,且就业意向至少有三个行业的学生有7人.为方便统计,将至少有三个行业就业意向的这7名学生分别记为,,,,,,,统计如下表:
学生 就业意向 | |||||||
公务员 | × | 〇 | × | 〇 | 〇 | × | × |
教师 | × | 〇 | × | 〇 | 〇 | 〇 | 〇 |
金融 | × | × | 〇 | 〇 | 〇 | × | × |
商贸 | 〇 | 〇 | 〇 | × | 〇 | 〇 | 〇 |
公司 | 〇 | 〇 | × | 〇 | 〇 | × | 〇 |
自主创业 | 〇 | × | 〇 | × | × | 〇 | 〇 |
其中“〇”表示有该行业就业意向,“×”表示无该行业就业意向.
①试估计该学院2020届毕业生中有自主创业意向的学生人数;
②现从,,,,,,这7人中随机抽取2人接受采访,设为事件“抽取的2人中至少有一人有自主创业意向”,求事件发生的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数的导函数为,且对任意的实数x都有(e是自然对数的底数),且,若关于x的不等式的解集中恰有两个整数,则实数m的取值范围是( )
A. B. C. D.
查看答案和解析>>
科目: 来源: 题型:
【题目】2019年末,武汉出现新型冠状病毒肺炎()疫情,并快速席卷我国其他地区,传播速度很快.因这种病毒是以前从未在人体中发现的冠状病毒新毒株,所以目前没有特异治疗方法,防控难度很大.武汉市出现疫情最早,感染人员最多,防控压力最大,武汉市从2月7日起举全市之力入户上门排查确诊的新冠肺炎患者、疑似的新冠肺炎患者、无法明确排除新冠肺炎的发热患者和与确诊患者的密切接触者等“四类”人员,强化网格化管理,不落一户、不漏一人.在排查期间,一户6口之家被确认为“与确诊患者的密切接触者”,这种情况下医护人员要对其家庭成员随机地逐一进行“核糖核酸”检测,若出现阳性,则该家庭为“感染高危户”.设该家庭每个成员检测呈阳性的概率均为()且相互独立,该家庭至少检测了5个人才能确定为“感染高危户”的概率为,当时,最大,则( )
A.B.C.D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com